Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA data show earthquakes may quickly boost regional volcanoes

12.04.2007
Scientists using NASA satellite data have found strong evidence that a major earthquake can lead to a nearly immediate increase in regional volcanic activity.

The intensity of two ongoing volcanic eruptions on Indonesia’s Java Island increased sharply three days following a powerful, 6.4-magnitude earthquake on the island in May 2006. The increased volcanic activity persisted for about nine days.

"During this period, we found clear evidence that the earthquake caused both volcanoes to release greater amounts of heat, and lava emission surged to two to three times higher than prior to the tremor," said study lead author Andrew Harris, University of Hawaii, Honolulu. The research was recently published in the American Geophysical Union's Geophysical Research Letters.

While scientists have long debated whether earthquakes can trigger new volcanic eruptions, this study linked an earthquake to enhanced volcanic activity at two ongoing eruptions that were being closely monitored by satellite-based sensors on a daily basis.

At the time of the earthquake, each volcano was being checked for changes in heat output by satellite sensors as part of a routine global "hot spot" monitoring effort that uses near real-time satellite data from NASA's Terra and Aqua satellites.

Maps of worldwide hot spot activity are created with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on these satellites, pinpointing locations where surface temperatures are much hotter than their surroundings. The scientists combined these data with other details about the Indonesian volcanoes gathered by the satellites to analyze temperature and lava output rates at both volcanoes over a 35-day period spanning the earthquake.

The two volcanoes, Merapi and Semeru, are about 260 kilometers (162 miles) apart and roughly 50 kilometers (31 miles) north and 280 kilometers (174 miles) east of the earthquake epicenter, respectively. Given these distances, the researchers believe underground stresses from the earthquake's seismic waves likely acted to pump magma -- molten rock beneath the surface -- into the conduit to the surface, ultimately increasing eruption rates.

"The responses at Merapi and Semeru lagged about three days behind the triggering earthquake, which may reflect the time it took the change felt by magma residing at deeper levels to be transmitted to the surface," said Harris.

The researchers concluded that regional earthquake events have sufficient power to modify the intensity of activity at ongoing eruptions, although they may not always be able to trigger new volcanic eruptions.

They also noted that the Java earthquake had a significant influence on the volcanoes for a relatively short period of several days, suggesting that catching the effect of a quake on an eruption requires careful observation. "Eruptions must be closely and continuously monitored in the days immediately before, during and after an earthquake if we are to link any earthquake with enhanced volcanic activity," added Harris.

Satellite monitoring may be able to play a predictive role in eruptions, rather than just its more traditional responsive role, according to the study. Instruments on today's advanced satellites are providing new and considerably more data to help scientists better track and understand volcanic eruptions.

"The satellite data we have now -- from MODIS, NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer and the Landsat-7 satellite -- give us fresh insights into the behavior of volcanic systems around the entire globe," said Harris. "This worldwide perspective would not have been possible using ground-based sensors; there are too many unmonitored sectors and periods. We simply could not have uncovered our results without the continuous and global data provided by MODIS."

The researchers are currently reviewing older MODIS hot spot data, which extends back to 2000, to uncover additional earthquake-induced responses at erupting volcanoes in hope of identifying patterns that might be used to build a predictive model for forecasting earthquake-induced changes in activity at erupting volcanoes.

Mike Bettwy | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/earthquake_volcano.html

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>