Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-resolution images herald new era in Earth sciences

10.04.2007
High-resolution images that reveal unexpected details of the Earth's internal structure are among the results reported by MIT and Purdue scientists in the March 30 issue of Science.

The researchers adapted technology developed for near-surface exploration of reservoirs of oil and gas to image the core-mantle boundary some 2,900 kilometers, or 1,800 miles, beneath Central and North America.

"Rather than depth, it's the resolution and lateral scale that are unique in this work," said lead author Rob van der Hilst, professor of earth, atmospheric and planetary sciences (EAPS) and director of MIT's Earth Resources Laboratory. "This could lead to a new era in seismology and all the other deep Earth sciences. In addition, our new expertise may be able to improve how we look for oil in or beneath geologically complex structures such as the Gulf of Mexico salt domes," he said.

The technique--akin to medical imaging such as ultrasounds and CAT scans--led to detailed new images of the boundary between the Earth's core and mantle. These images, in turn, help researchers better understand how and where the Earth's internal heat is produced and how it is transported to the surface. They also provide insight into the Earth's giant heat engine--a constant cycle of heat production, heat transfer and cooling.

The Earth is made up of the outermost rocky crust, which is around 40 kilometers deep; iron and magnesium silicates of the upper and lower mantles; and the liquid outer core and solid inner core.

Scientists have long assumed that the lower mantle is relatively featureless. But more detailed views have indicated that there is more complexity than expected. "I expect that the Earth is full of such surprises, and with these new imaging technologies and data sets, we have only just begun to scratch the surface of possibilities afforded by modern data sets," van der Hilst said.

Reflecting waves

Deeply propagating waves generated by large earthquakes hit the core-mantle boundary and bounce back--as if from a mirror--to the Earth's surface.

Each time one of these waves hits an underground structure, it emits a weak signal. "With enough data, we can detect and interpret this signal," van der Hilst said. Using data from thousands of earthquakes recorded at more than 1,000 seismic observatories, an interdisciplinary team of earth scientists and mineral physicists led by van der Hilst pinpointed the details of deep earth structures. The cross-disciplinary study involved seismologists, mathematicians, statisticians and mineral physicists from the University of Illinois and Colorado School of Mines in addition to MIT and Purdue.

The imaging technique was introduced 20 years ago as a powerful tool for finding subsurface reservoirs of gas or oil. Meanwhile, over the past decades, large arrays of seismometers have been installed at many places in the world for research on earthquakes and the Earth's interior. "It is now possible to begin applying techniques developed by the oil industry to these large earthquake databases," van der Hilst said.

The idea for the research reported in Science was born over breakfast in a Cambridge, Mass., Au Bon Pain some five years ago, when Maarten de Hoop, an applied mathematician at Purdue University, and van der Hilst realized that they might be able to pair up the industry tools and the earthquake data to study the core-mantle boundary in ways never before possible.

Years of work by Ping Wang, EAPS graduate student at MIT, led to the possibility for high-resolution imaging, and in collaboration with EAPS mineral physicist Dan Shim, the team produced maps of temperature and heat flow some 3,000 kilometers below the Earth's surface, using the data to provide a kind of "seismothermometer" of the Earth's temperature at extreme depths.

No one has ever seen the turbulently swirling liquid iron of the outer core meeting the silicate rock of the mantle--10 times as far below ground as the International Space Station is above--but the cross-disciplinary study led the researchers to estimate the temperature there is a white-hot 3,700 degrees Celsius.

Because of rich data available for the region between Central and North America, the researchers used this area as their first application of the tools, mapping millions of square kilometers underground. They hope to apply the techniques around the globe and perhaps to image an even more remote boundary of the inner core close to the center of the Earth.

This work was supported by the National Science Foundation.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>