Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experts at Nevada develop technology to increase effectiveness of tsunami warning systems

04.04.2007
Scientists at the University of Nevada, Reno are at the forefront on a number of seismological fields, including helping the world better determine whether an earthquake is big enough to generate an ocean-wide tsunami.

Through work at the Nevada Seismological Laboratory on the Nevada campus, important data on seismological events throughout the world is compiled, including Monday’s fatal occurrence in the Solomon Islands, where at least 13 people were killed. Tsunamis triggered by an undersea earthquake crashed ashore and wiped away entire villages and set off alerts from Australia to Hawaii.

A research team led by Geoffrey Blewitt of the Nevada Bureau of Mines and Geology and Seismological Laboratory has demonstrated that a large quake’s true size can be determined within 15 minutes using Global Positioning System data. This swift exchange of information, which is much faster than is possible with current methods, can be critical in determining whether an earthquake might trigger a tsunami. Together with a seismometer and ocean buoy data, GPS has the potential to become an important tool in improving tsunami danger assessments, Blewitt said.

"We'll always need seismology as the first level of alert for large earthquakes, and we'll need ocean buoys to actually sense the tsunami waves," said Blewitt, whose work was originally accomplished through the NASA-funded Jet Propulsion Laboratory in Pasadena, Calif. Blewitt’s team recently was granted further funding from the U.S. Geological Survey’s Natural Hazards Reduction Program to continue research and development.

"The advantage of including GPS in warning systems is that it quickly tells how much the ocean floor moved, and that information can directly set tsunami models into motion."

University seismological experts such as John Anderson, director of the Nevada Seismological Laboratory, and Richard Schweickert, professor of geological sciences and engineering, have used analysis similar to that used in studying the propagation of tsunamis in oceans in determining the likelihood of a tsunami occurring at Lake Tahoe, which straddles both the states of Nevada and California. Anderson, considered one of the country’s foremost earthquake experts, said that those who live along shorelines should always be aware that tsunamis can occur.

“If there is ever a strong earthquake at Lake Tahoe, for example, where the shaking is really strong for more than 10 seconds, anyone less than 50 feet above the lake level should run to higher ground as soon as the shaking stops,” Anderson said.

Nevada’s land-grant university founded in 1874, the University of Nevada, Reno has more than 16,000 students and four campuses with Cooperative Extension education programs in all Nevada counties. The University is listed as one of the country’s top 150 research institutions by the Carnegie Foundation, and is home to America’s sixth-largest study abroad program and the state’s medical school.

John Anderson | EurekAlert!
Further information:
http://www.seismo.unr.edu

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>