Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IARC scientist to lead sea ice expedition

Arctic sea ice is in constant motion.
It rides on the ocean, absorbing energy from the circumpolar weather systems.

This movement causes a buildup of stress within the ice. Under enough stress, the ice cracks or buckles in a cataclysmic process that resembles the energy released in earthquakes. These continuous ice quakes result in open leads of water or mountainous ridges of broken, jumbled ice. These deformations, in turn, may have an effect on the thickness and durability of the arctic ice pack in the face of climate change.

University of Alaska Fairbanks researcher Jennifer Hutchings hopes that a better understanding of this complex process will help improve climate models and shed light on how sea ice behaved in the past and how it may change in the future.

Hutchings, a research associate at the UAF International Arctic Research Center, is chief scientist on a team of researchers that will spend the next two weeks at the U.S. Navy ice camp in the Beaufort Sea studying the relationship between ice movement, stress and the overall mass of sea ice.

The UAF-led expedition, which also includes lead researchers Cathleen Geiger and Chandra Kambhamettu of the University of Delaware and Jacqueline Richter-Menge of the U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory, begins April 1. The field expedition is part of the Sea Ice Experiment: Dynamic Nature of the Arctic project, dubbed SEDNA, which is part of UAF’s collaborative International Polar Year research efforts.

Hutchings said the fieldwork will involve deploying buoys and other instruments to measure the movement and stress of the ice pack in the area around the field camp.

“We are going to use that information to validate the current generation of sea ice models,” Hutchings said. “We are trying to reduce the uncertainty of our prediction of arctic climate change.”

Ice deformation may have an effect on climate because open leads of water tend to add more heat and moisture to the atmosphere, which could reduce the overall amount of sea ice.

Conversely, if ice movement results in more ridges and thicker ice, the result could be a more durable arctic ice pack that is less vulnerable to seasonal melting.

The amount of sea ice is important to the overall understanding of climate change because it is thought to affect how much solar radiation, and hence heat, is reflected back into space. Sea ice is also thought to be an indicator of global temperature changes

The expedition also offers scientists a chance to share the field research experience with K-12 students through the National Science Foundation’s PolarTREC program, which links scientists and teachers for collaboration. Robert Harris, a high school teacher from Vermont, will join the researchers on the expedition and will relay the events and experiences of the camp to K-12 students via the Internet at

The SEDNA project is funded by a $1.4 million grant from the National Science Foundation. The project will also contribute to the lead International Polar Year project on the state of arctic sea ice.

NOTE TO EDITORS: Jennifer Hutchings will be departing for field camp on March 29, but will be available for interviews upon her return.

CONTACT: Jennifer Hutchings, IARC research associate, at (907) 474-7569 or via e-mail at Marmian Grimes, UAF public information officer, at (907) 474-7902 or via e-mail at

Marmian Grimes | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>