Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IARC scientist to lead sea ice expedition

04.04.2007
Arctic sea ice is in constant motion.
It rides on the ocean, absorbing energy from the circumpolar weather systems.

This movement causes a buildup of stress within the ice. Under enough stress, the ice cracks or buckles in a cataclysmic process that resembles the energy released in earthquakes. These continuous ice quakes result in open leads of water or mountainous ridges of broken, jumbled ice. These deformations, in turn, may have an effect on the thickness and durability of the arctic ice pack in the face of climate change.

University of Alaska Fairbanks researcher Jennifer Hutchings hopes that a better understanding of this complex process will help improve climate models and shed light on how sea ice behaved in the past and how it may change in the future.

Hutchings, a research associate at the UAF International Arctic Research Center, is chief scientist on a team of researchers that will spend the next two weeks at the U.S. Navy ice camp in the Beaufort Sea studying the relationship between ice movement, stress and the overall mass of sea ice.

The UAF-led expedition, which also includes lead researchers Cathleen Geiger and Chandra Kambhamettu of the University of Delaware and Jacqueline Richter-Menge of the U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory, begins April 1. The field expedition is part of the Sea Ice Experiment: Dynamic Nature of the Arctic project, dubbed SEDNA, which is part of UAF’s collaborative International Polar Year research efforts.

Hutchings said the fieldwork will involve deploying buoys and other instruments to measure the movement and stress of the ice pack in the area around the field camp.

“We are going to use that information to validate the current generation of sea ice models,” Hutchings said. “We are trying to reduce the uncertainty of our prediction of arctic climate change.”

Ice deformation may have an effect on climate because open leads of water tend to add more heat and moisture to the atmosphere, which could reduce the overall amount of sea ice.

Conversely, if ice movement results in more ridges and thicker ice, the result could be a more durable arctic ice pack that is less vulnerable to seasonal melting.

The amount of sea ice is important to the overall understanding of climate change because it is thought to affect how much solar radiation, and hence heat, is reflected back into space. Sea ice is also thought to be an indicator of global temperature changes

The expedition also offers scientists a chance to share the field research experience with K-12 students through the National Science Foundation’s PolarTREC program, which links scientists and teachers for collaboration. Robert Harris, a high school teacher from Vermont, will join the researchers on the expedition and will relay the events and experiences of the camp to K-12 students via the Internet at www.polartrec.com/sedna-ice-camp/overview.

The SEDNA project is funded by a $1.4 million grant from the National Science Foundation. The project will also contribute to the lead International Polar Year project on the state of arctic sea ice.

NOTE TO EDITORS: Jennifer Hutchings will be departing for field camp on March 29, but will be available for interviews upon her return.

CONTACT: Jennifer Hutchings, IARC research associate, at (907) 474-7569 or via e-mail at jenny@iarc.uaf.edu. Marmian Grimes, UAF public information officer, at (907) 474-7902 or via e-mail at marmian.grimes@uaf.edu.

Marmian Grimes | EurekAlert!
Further information:
http://research.iarc.uaf.edu/SEDNA/
http://www.polartrec.com/sedna-ice-camp/overview

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>