Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IARC scientist to lead sea ice expedition

04.04.2007
Arctic sea ice is in constant motion.
It rides on the ocean, absorbing energy from the circumpolar weather systems.

This movement causes a buildup of stress within the ice. Under enough stress, the ice cracks or buckles in a cataclysmic process that resembles the energy released in earthquakes. These continuous ice quakes result in open leads of water or mountainous ridges of broken, jumbled ice. These deformations, in turn, may have an effect on the thickness and durability of the arctic ice pack in the face of climate change.

University of Alaska Fairbanks researcher Jennifer Hutchings hopes that a better understanding of this complex process will help improve climate models and shed light on how sea ice behaved in the past and how it may change in the future.

Hutchings, a research associate at the UAF International Arctic Research Center, is chief scientist on a team of researchers that will spend the next two weeks at the U.S. Navy ice camp in the Beaufort Sea studying the relationship between ice movement, stress and the overall mass of sea ice.

The UAF-led expedition, which also includes lead researchers Cathleen Geiger and Chandra Kambhamettu of the University of Delaware and Jacqueline Richter-Menge of the U.S. Army Corps of Engineers’ Cold Regions Research and Engineering Laboratory, begins April 1. The field expedition is part of the Sea Ice Experiment: Dynamic Nature of the Arctic project, dubbed SEDNA, which is part of UAF’s collaborative International Polar Year research efforts.

Hutchings said the fieldwork will involve deploying buoys and other instruments to measure the movement and stress of the ice pack in the area around the field camp.

“We are going to use that information to validate the current generation of sea ice models,” Hutchings said. “We are trying to reduce the uncertainty of our prediction of arctic climate change.”

Ice deformation may have an effect on climate because open leads of water tend to add more heat and moisture to the atmosphere, which could reduce the overall amount of sea ice.

Conversely, if ice movement results in more ridges and thicker ice, the result could be a more durable arctic ice pack that is less vulnerable to seasonal melting.

The amount of sea ice is important to the overall understanding of climate change because it is thought to affect how much solar radiation, and hence heat, is reflected back into space. Sea ice is also thought to be an indicator of global temperature changes

The expedition also offers scientists a chance to share the field research experience with K-12 students through the National Science Foundation’s PolarTREC program, which links scientists and teachers for collaboration. Robert Harris, a high school teacher from Vermont, will join the researchers on the expedition and will relay the events and experiences of the camp to K-12 students via the Internet at www.polartrec.com/sedna-ice-camp/overview.

The SEDNA project is funded by a $1.4 million grant from the National Science Foundation. The project will also contribute to the lead International Polar Year project on the state of arctic sea ice.

NOTE TO EDITORS: Jennifer Hutchings will be departing for field camp on March 29, but will be available for interviews upon her return.

CONTACT: Jennifer Hutchings, IARC research associate, at (907) 474-7569 or via e-mail at jenny@iarc.uaf.edu. Marmian Grimes, UAF public information officer, at (907) 474-7902 or via e-mail at marmian.grimes@uaf.edu.

Marmian Grimes | EurekAlert!
Further information:
http://research.iarc.uaf.edu/SEDNA/
http://www.polartrec.com/sedna-ice-camp/overview

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>