Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New evidence puts 'Snowball Earth' theory out in the cold

The theory that Earth once underwent a prolonged time of extreme global freezing has been dealt a blow by new evidence that periods of warmth occurred during this so-called 'Snowball Earth' era.

Analyses of glacial sedimentary rocks in Oman, published online today in Geology, have produced clear evidence of hot-cold cycles in the Cryogenian period, roughly 850-544 million years ago. The UK-Swiss team claims that this evidence undermines hypotheses of an ice age so severe that Earth's oceans completely froze over.

Using a technique known as the chemical index of alteration, the team examined the chemical and mineral composition of sedimentary rocks to search for evidence of any climatic changes. A high index of alteration would indicate high rates of chemical weathering of contemporary land surfaces, which causes rocks to quickly decompose and is enhanced by humid or warm conditions. Conversely, a low chemical index of alteration would indicate low rates of chemical weathering during cool, dry conditions.

The researchers found three intervals with evidence for extremely low rates of chemical weathering, indicating pulses of cold climate. However these intervals alternate with periods of high rates of chemical weathering, likely to represent interglacial periods with warmer climates.

These warmer periods mean that, despite the severe glaciation of this time in Earth history, the complete deep-freeze suggested by 'Snowball Earth' theories never took place, and that some areas of open, unfrozen ocean continued to exist. Leader of the study, Professor Philip Allen of Imperial College London's Department of Earth Science and Engineering, explains:

"If the Earth had become fully frozen for a long period of time, these climatic cycles could not exist – the Earth would have changed into a bleak world with almost no weather, since no evaporation from the oceans could take place, and little snowfall would be possible. In fact, once fully frozen, it is difficult to create the right conditions to cause a thaw, since much of the incoming solar radiation would be reflected back by the snow and ice. The evidence of climatic cycles is therefore hostile to the idea of ‘Snowball Earth’.”

Professor Allen adds that understanding how Earth's climate has changed in the past provides important data for current climate change models. He says:

"This isn't just curiosity about the past - we are living in a time of climate change and there is a huge debate going on over what the natural variability of the climate is. Knowledge of climate change in deep time provides clues to the way in which our climate system works under extreme conditions. But these extreme conditions were probably not a full global freeze. It is equally important to understand a picture of global climate retaining open ocean between the tropics.”

This challenge to the 'Snowball Earth' opens intriguing questions about how the Earth came so close to climate disaster but managed to avoid it, according to Professor Allen.

"This was the most severe glaciation experienced by the planet over the last billion years, and the big question is - how can ice get all the way to the tropics but not finish the job?" he says. "The total icy shutdown that we came so close to would have dealt a severe blow to early life and most likely would have resulted in a completely different evolutionary pathway. The reasons for Earth’s near-miss with global refrigeration remains an important scientific question to resolve."

The team's findings come from analyses of sedimentary rock from the Huqf Supergroup, Oman's oldest sedimentary sequence that spans around 200 million years of the Neoproterozoic era.

Abigail Smith | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>