Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic sea ice decline may trigger climate change cascade

16.03.2007
Arctic sea ice that has been dwindling for several decades may have reached a tipping point that could trigger a cascade of climate change reaching into Earth's temperate regions, says a new University of Colorado at Boulder study.

Mark Serreze, a senior research scientist at CU-Boulder's National Snow and Ice Data Center who led the study synthesizing results from recent research, said the Arctic sea-ice extent trend has been negative in every month since 1979, when concerted satellite record keeping efforts began. The team attributed the loss of ice, about 38,000 square miles annually as measured each September, to rising concentrations of greenhouse gases and strong natural variability in Arctic sea ice.

"When the ice thins to a vulnerable state, the bottom will drop out and we may quickly move into a new, seasonally ice-free state of the Arctic," Serreze said. "I think there is some evidence that we may have reached that tipping point, and the impacts will not be confined to the Arctic region."

A review paper by Serreze and Julienne Stroeve of CU-Boulder's NSIDC and Marika Holland of the National Center for Atmospheric Research titled "Perspectives on the Arctic's Shrinking Sea Ice Cover" appears in the March 16 issue of Science.

The loss of Arctic sea ice is most often tied to negative effects on wildlife like polar bears and increasing erosion of coastlines in Alaska and Siberia, he said. But other studies have linked Arctic sea ice loss to changes in atmospheric patterns that cause reduced rainfall in the American West or increased precipitation over western and southern Europe, he said.

The decline in Arctic sea ice could impact western states like Colorado, for example, by reducing the severity of Arctic cold fronts dropping into the West and reducing snowfall, impacting the ski industry and agriculture, he said. "Just how things will pan out is unclear, but the bottom line is that Arctic sea ice matters globally," Serreze said.

Because temperatures across the Arctic have risen from 2 degrees to 7 degrees F. in recent decades due to a build-up of atmospheric greenhouse gases, there is no end in sight to the decline in Arctic sea ice extent, said Serreze of CU-Boulder's Cooperative Institute for Research in Environmental Sciences. Arctic sea ice extent is defined as the total area of all regions where ice covers at least 15 percent of the ocean surface.

"While the Arctic is losing a great deal of ice in the summer months, it now seems that it also is regenerating less ice in the winter," said Serreze. "With this increasing vulnerability, a kick to the system just from natural climate fluctuations could send it into a tailspin."

In the late 1980s and early 1990s, shifting wind patterns from the North Atlantic Oscillation flushed much of the thick sea ice out of the Arctic Ocean and into the North Atlantic where it drifted south and eventually melted, he said. The thinner layer of "young" ice that formed it its place melts out more readily in the succeeding summers, leading to more open water and more solar radiation being absorbed by the open ocean and fostering a cycle of higher temperatures and earlier ice melt, he said.

"This ice-flushing event could be a small-scale analog of the sort of kick that could invoke rapid collapse, or it could have been the kick itself," he said. "At this point, I don't think we really know."

Researchers also have seen pulses of warmer water from the North Atlantic entering the Arctic Ocean beginning in the mid-1990s, which promote ice melt and discourage ice growth along the Atlantic ice margin, he said. "This is another one of those potential kicks to the system that could evoke rapid ice decline and send the Arctic into a new state."

The potential for such rapid ice loss was highlighted in a December 2006 study by Holland and her colleagues published in Geophysical Research Letters. In one of their climate model simulations, the Arctic Ocean in September became nearly ice-free between 2040 and 2050.

"Given the growing agreement between models and observations, a transition to a seasonally ice-free Arctic Ocean as the system warms seems increasingly certain," the researchers wrote in Science. "The unresolved questions regard when this new Arctic state will be realized, how rapid the transition will be, and what will be the impacts of this new state on the Arctic and the rest of the globe."

Mark Serreze | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>