Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic sea ice decline may trigger climate change cascade

16.03.2007
Arctic sea ice that has been dwindling for several decades may have reached a tipping point that could trigger a cascade of climate change reaching into Earth's temperate regions, says a new University of Colorado at Boulder study.

Mark Serreze, a senior research scientist at CU-Boulder's National Snow and Ice Data Center who led the study synthesizing results from recent research, said the Arctic sea-ice extent trend has been negative in every month since 1979, when concerted satellite record keeping efforts began. The team attributed the loss of ice, about 38,000 square miles annually as measured each September, to rising concentrations of greenhouse gases and strong natural variability in Arctic sea ice.

"When the ice thins to a vulnerable state, the bottom will drop out and we may quickly move into a new, seasonally ice-free state of the Arctic," Serreze said. "I think there is some evidence that we may have reached that tipping point, and the impacts will not be confined to the Arctic region."

A review paper by Serreze and Julienne Stroeve of CU-Boulder's NSIDC and Marika Holland of the National Center for Atmospheric Research titled "Perspectives on the Arctic's Shrinking Sea Ice Cover" appears in the March 16 issue of Science.

The loss of Arctic sea ice is most often tied to negative effects on wildlife like polar bears and increasing erosion of coastlines in Alaska and Siberia, he said. But other studies have linked Arctic sea ice loss to changes in atmospheric patterns that cause reduced rainfall in the American West or increased precipitation over western and southern Europe, he said.

The decline in Arctic sea ice could impact western states like Colorado, for example, by reducing the severity of Arctic cold fronts dropping into the West and reducing snowfall, impacting the ski industry and agriculture, he said. "Just how things will pan out is unclear, but the bottom line is that Arctic sea ice matters globally," Serreze said.

Because temperatures across the Arctic have risen from 2 degrees to 7 degrees F. in recent decades due to a build-up of atmospheric greenhouse gases, there is no end in sight to the decline in Arctic sea ice extent, said Serreze of CU-Boulder's Cooperative Institute for Research in Environmental Sciences. Arctic sea ice extent is defined as the total area of all regions where ice covers at least 15 percent of the ocean surface.

"While the Arctic is losing a great deal of ice in the summer months, it now seems that it also is regenerating less ice in the winter," said Serreze. "With this increasing vulnerability, a kick to the system just from natural climate fluctuations could send it into a tailspin."

In the late 1980s and early 1990s, shifting wind patterns from the North Atlantic Oscillation flushed much of the thick sea ice out of the Arctic Ocean and into the North Atlantic where it drifted south and eventually melted, he said. The thinner layer of "young" ice that formed it its place melts out more readily in the succeeding summers, leading to more open water and more solar radiation being absorbed by the open ocean and fostering a cycle of higher temperatures and earlier ice melt, he said.

"This ice-flushing event could be a small-scale analog of the sort of kick that could invoke rapid collapse, or it could have been the kick itself," he said. "At this point, I don't think we really know."

Researchers also have seen pulses of warmer water from the North Atlantic entering the Arctic Ocean beginning in the mid-1990s, which promote ice melt and discourage ice growth along the Atlantic ice margin, he said. "This is another one of those potential kicks to the system that could evoke rapid ice decline and send the Arctic into a new state."

The potential for such rapid ice loss was highlighted in a December 2006 study by Holland and her colleagues published in Geophysical Research Letters. In one of their climate model simulations, the Arctic Ocean in September became nearly ice-free between 2040 and 2050.

"Given the growing agreement between models and observations, a transition to a seasonally ice-free Arctic Ocean as the system warms seems increasingly certain," the researchers wrote in Science. "The unresolved questions regard when this new Arctic state will be realized, how rapid the transition will be, and what will be the impacts of this new state on the Arctic and the rest of the globe."

Mark Serreze | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>