Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Niño is yawning

28.02.2002


Four years ago, torrential rains battered the Southern US, mudslides struck in Peru - and the inhabitants of Canada`s west coast saved up to 30% on their winter heating bills. The cause? El Niño, a huge temperature shift in the Pacific Ocean which spawns climate changes globally. Today, using satellite Earth observation data, scientists are detecting the early warning signs of a new El Niño event and predicting that it will develop over the next 3 to 6 months, bringing climate changes to countries thousands of miles from the western Pacific, birthplace of the event itself.



"In normal years, there`s a large area of warm water in the western Pacific and colder water at the eastern side. In El Niño years, that warm water shifts eastward, which has major effects on the atmosphere above the ocean and thus the climate of the nearby countries," explains Joel Picaut, of France`s Centre National d`Etudes Spatiales.

Imaging from space using radar altimetry and sea surface temperature measurements reveals that the trade winds near the Equator pile up a mass of water, warmed by the sun on its journey across the Pacific, which covers an area the size of Europe. This so-called `warm pool` off the Philippine coast is in fact a plateau in the sea some 30 cm high and with a temperature of approximately 29°C - 5°C above average. In contrast, the water off the Galapagos Islands on the other side of the Pacific is normally a mere 20°C. When an El Niño event takes place, all this changes.
"No one is yet quite sure of the mechanism that causes an El Niño," comments Picaut. "It`s clear that the movement of the warm water and the change in the wind patterns are closely linked, but we do not yet know which is the cause and which the effect." The warm water in the west causes convection in the atmosphere and a relatively constant wind from east to west - the trade winds. When the El Niño cycle begins, the trade winds reduce, no longer pushing water toward the warm pool and the mass of warm water begins to flow eastward, toward the Galapagos Islands and the Peruvian coast. "Over a period of 1-2 weeks, we see so-called `westerly wind bursts`, in which the direction of the trade winds reverses. At the equator, you see a very interesting effect, where the wind and the Earth`s rotation combine to trigger `Kelvin waves`, which are like a wall of water 30 cm high moving across the pacific at about 200 km per day. You can see the Kelvin waves clearly and monitor their progress using radar altimeter and sea surface temperature data," says Picaut. These fast-moving Kelvin waves are the heralds of the more sedate progress of the main body of water, which travels at only 30 km per day. In January, scientists detected such a Kelvin wave near the International Date Line in the central Pacific.



"We don`t yet know if the wind bursts and Kelvin waves are fundamental to the El Niño mechanism, or whether they are simply an effect on top of some underlying changes," comments Picaut. Despite the mystery surrounding the origins and mechanism of El Niño, scientists are making significant strides in the ability to predict its onset. "Although El Niño is cyclical, it`s not like clockwork, and the strength of the effect varies dramatically from one event to the next. We had a strong El Niño in 1982/83, another in 86/87, a series of small ones in 91/92 and 93 and a huge one in 1997," comments Picaut. "In 1999/2000, we were actually in `La Niña`, which is the opposite effect." La Niña causes an increase in the trade winds and cooling of the waters around the Galapagos Islands.

"The ocean is the `memory` of El Niño," says Picaut, "water has a heat capacity 1000 times that of the air, so it`s the ocean that drives the event, and it`s the ocean we must monitor to understand it." A 10-year programme is underway using buoys and floating sensor packages to gather ocean data from the sea itself. This data will help develop the next generation of computer simulations of El Niño. "We`ve already created a computer model which can help us predict an El Niño event from 6 months to a year in advance," explains Picaut, "but you can`t put nature into a computer. We predicted the 1997 El Niño six months before it began, but we were taken completely by surprise by how strong it was."

Prediction may be an inexact science, but any warning is better than none at all. In the US, the prediction led to bulldozers moving in along the Californian coast to create better sea defences against the El Niño-charged Pacific rollers. With sufficient warning, countries like Peru and Chile, which will bear the brunt of rains 10-40 times heavier than normal, can prepare to deal with flooding by improving watercourses and moving people from the areas most threatened by flash floods and mudslides. "If you know El Niño is on the way, you can be ready," sums up Joel Picaut. Today, it looks as though preparations should get under way.

Once Envisat is in orbit it will continue to add a new frame each week to the onging film of the Pacific Ocean being taken by Earth observation satellites. This continuous monitoring provides early warning of an El Niño event as well as supplying climatologists with the data they need to learn more about El Niño, why it occurs and whether this phenomenon is on the increase due to global warming.

Jerome Benveniste | alphagalileo
Further information:
http://www.esa.int

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>