Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transported Black Carbon a Significant Player in Pacific Ocean Climate

15.03.2007
Soot and other particulate pollution from Asian sources make up more than 75 percent of black carbon transported at high altitudes, according to a Scripps Institution of Oceanography, UC San Diego-led study

More than three-quarters of the particulate pollution known as black carbon transported at high altitudes over the West Coast during spring is from Asian sources, according to a research team led by Professor V. Ramanathan at Scripps Institution of Oceanography, UC San Diego.

Though the transported black carbon, most of which is soot, is an extremely small component of air pollution at land surface levels, the phenomenon has a significant heating effect on the atmosphere at altitudes above two kilometers (6,562 feet).

As the soot heats the atmosphere, however, it also dims the surface of the ocean by absorbing solar radiation, said Ramanathan, a climate scientist at Scripps, and Odelle Hadley, a graduate student at the Center for Atmospheric Sciences at Scripps. The two are lead authors of a research paper appearing in the March 14 issue of the Journal of Geophysical Research.

The dual effect carries consequences for the Pacific Ocean region that drives much of Earth's climate.

"That's the primary concern we have with these aerosols," said Hadley. "They can really affect global climate."

"The soot heating of the atmosphere exceeds the surface dimming and as a result the long range transported soot amplifies the global warming due to increase in carbon dioxide," said Ramanathan. "We have to find out if this amplification is just restricted to spring time or is happening throughout the year."

The researchers found that transported black carbon from Asian sources is equal to 77 percent of North American black carbon emissions in the troposphere during the spring. In a follow-on study funded by the California Energy Commission (CEC), Hadley, Ramanathan and fellow Scripps climate scientist Craig Corrigan are now studying how much carbon might be incorporated into precipitation and what the effects on melt rates of Sierra Nevada snow pack could be.

The measure of high black carbon concentration from Asian sources "is a startling finding by itself, but its potential importance is magnified by the fact that black carbon is believed to have a disproportional impact on regional climate," said Guido Franco, technical lead for climate change research at the CEC's Public Interest Energy Research (PIER) program. "Fortunately, we have already started to address this issue with Scripps and more studies are being planned."

The researchers compared rarely available in-flight data collected during the spring 2004 Cloud Indirect Effects Experiment (CIFEX), a component of which was a series of atmospheric meteorological measurements made during flights originating in Eureka, Calif. The team combined that information with data from 30 West Coast meteorological stations and compared it with computer predictions made by the Chemical Weather Forecast System (CFORS).

Transport of Asian black carbon, particulate pollution generated by automobile exhaust, agricultural burning and other sources, is heaviest in spring when cold Arctic fronts dip to lower latitudes and loft warmer air to higher levels in the atmosphere. It is part of a worldwide transport of aerosols that sees them remain aloft at high altitudes for up to two weeks.

Black carbon concentrations diminish as they move farther away from their sources in cities and farmlands in countries such as China and India. However, over the Pacific Ocean, the particles are in sufficient concentration to have a heating effect on the upper atmosphere, a prediction based on output from other computer models besides CFORS. At the same time, the radiation-absorbing particles dim skies at the surface.

On a regional level, that amount of heating, or positive radiative forcing, the black carbon causes in the skies over the Pacific is about 40 percent of the forcing that has been attributed to the carbon dioxide increase of the last century, said Ramanathan. It likely has measurable effects on a variety of other physical and biological conditions in the areas of the Pacific over which the particulate pollution passes.

"It was a major surprise," said Ramanathan, Hadley's adviser at Scripps. "When we came up with the preliminary results, we had to check it and recheck it."

Results from Hadley's study of black carbon's snow pack effects are expected by the end of this year.

Authors of the Journal of Geophysical Research article besides Hadley and Ramanathan include Corrigan, Greg Roberts and Guillaume Mauger at Scripps Oceanography and Gregory Carmichael and Youhua Tang of the University of Iowa.

The National Science Foundation, the National Oceanic and Atmospheric Administration (NOAA) and the California Energy Commission funded the study.

Robert Monroe | EurekAlert!
Further information:
http://www.ucsd.edu
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=777

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>