Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist troubleshoots silica problem at geothermal plants

15.03.2007
New research provides model for improving alternative energy source

In the debate over alternative energy resources, geothermal technology has received scant media attention. Advocates call it one of the cleanest, sustainable energy resources available. However, steep construction, equipment and drilling costs have prevented more widespread development of geothermal technology. An Ohio University hydrothermal systems expert is working to change that.

Geothermal technology harnesses energy created by heat at the Earth’s core. Internationally, geothermal power plants supply electricity to about 60 million people, mostly in developing countries. In the United States, geothermal power plants supply four million residents with electricity.

Power plants are built where there is access to a geothermal reservoir, which typically occurs along continental plate margins. The Pacific “Ring of Fire” provides some of the hottest spots on the planet for geothermal power. Because of this, Central America is a prime building area for geothermal power plants and draws researchers such as Ohio University hydrogeochemist Dina Lopez.

Lopez recently completed a study in El Salvador of one of the biggest problems plaguing the geothermal industry. That study earned Lopez and her co-authors a best paper award from the Geothermal Resources Council.

The researchers integrated findings from several studies examining the process of silica scaling. Power plants are built at geothermal reservoirs, where wells release steam, heat or hot water to spin turbine generators and produce electricity. Silica, which is released from dissolving rock, is a common element found in water. After extraction from the reservoirs, hot water cools down and silica precipitates, forming hard, glassy deposits that clog pipelines and injection drill holes at geothermal plants. Removing the silica buildup is costly and difficult due to the high volumes of water involved.

Lopez, an associate professor of geological sciences at Ohio University, and her co-authors created a model to better understand the impact of silica scaling and the rate at which it occurs. Their research shows that a combination of experimental field work and geochemical modeling programs can provide accurate indicators of the impact of silica scaling in geothermal wells.

“We used simple experiments to show the big picture,” said Lopez, who believes the group’s findings will help guide efforts to control silica scaling at geothermal power plants. Better control of silica scaling will help reduce the cost of maintaining geothermal plants. That’s good news for Lopez, who hopes her research will encourage the use of geothermal energy, which she says has been overshadowed by the debate over nuclear energy and the public’s reliance on fossil fuels.

“Geothermal energy has enormous potential,” she said. “There are hundreds of geothermal fields in the world, but they haven’t been exploited because of our ability to easily get energy from oil and other sources.”

M. Castro and J. Reyes Lopez from the University of Baja California, Mexicali, Mexico, and A. Matus, W. Guevara, F. Montalvo and C.E. Guerra from LaGeo, El Salvador, co-authored the paper presented at the annual meeting of the Geothermal Resources Council.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>