Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun-warmed air pollution flows east from Asia

15.03.2007
Most of the atmosphere-warming soot transported at high altitudes over the West Coast in spring comes from Asia, a new study estimates. That continent generates more than 75 percent of the high-flying contamination, which is a type of particulate pollution known as black carbon.

By absorbing sunlight, black-carbon particles heat the upper atmosphere while also reducing radiation at the surface. The new data indicates that the warming is winning out.

"The soot heating of the atmosphere exceeds the surface dimming and, as a result, the long-range, transported soot amplifies the global warming due to increase in carbon dioxide," says Professor V. Ramanathan at the Scripps Institution of Oceanography, UC San Diego. He and Scripps graduate student Odelle Hadley led the study, published online today in the Journal of Geophysical Research (Atmospheres). Other scientists at Scripps and the University of Iowa, Iowa City, also contributed to the study.

The black carbon transported from Asia in spring equals 77 percent of the black carbon emitted into the troposphere from North America during that season, the team also finds. The researchers used computer simulations and measurements of pollution taken in March and April of 2004 at the surface and at various elevations. Mostly soot, black carbon comes from automobile exhaust, agricultural burning and other sources.

Although the transported black-carbon pollution is an extremely small component of air pollution at land surface levels, it has a significant heating effect on the atmosphere at altitudes above two kilometers (7,000 feet). The particles influence the Pacific Ocean region, which drives much of Earth’s climate. "That’s the primary concern we have with these aerosols," said Hadley. "They can really affect global climate."

In a follow-on study funded by the California Energy Commission (CEC), Hadley, Ramanathan, and fellow Scripps climate scientist Craig Corrigan--who is also a coauthor on the black-carbon transport study--are now investigating how much carbon might be incorporated into precipitation. The study will also examine potential consequences for melt rates of snowpack in California’s Sierra Nevada mountains. Results from that study are expected by the end of this year.

The newly reported measure of black-carbon influx from Asia "is a startling finding by itself, but its potential importance is magnified by the fact that black carbon is believed to have a disproportional impact on regional climate," said Guido Franco, technical lead for climate-change research at the CEC’s Public Interest Energy Research (PIER) program.

The black-carbon investigators compared predictions from a computer model called the Chemical Weather Forecast System (CFORS) to rarely available, in-flight data collected over the Eastern Pacific Ocean and to surface data from 30 West Coast meteorological stations.

Transport of Asian black carbon peaks in the spring when cold Arctic fronts dip to lower latitudes and loft warmer air to higher levels in the atmosphere. The eastward flow of the contaminants is part of a worldwide transport of aerosols, which remain aloft at high altitudes for up to two weeks.

Black carbon concentrations diminish as the pollution moves farther away from its sources in cities and farmlands in countries like China and India. However, over the Pacific Ocean, the particles are in sufficient concentration to have a warming effect on the upper atmosphere of between 2.04 and 2.55 watts per square meter, a prediction based on output from other computer models besides CFORS. By contrast, the black-carbon-induced dimming at the surface amounts to only -1.45 to -1.47 watts per square meter.

On a regional level, the amount of warming, or positive radiative forcing, the black carbon causes in the skies over the Pacific is about 40 percent of that attributed to the carbon dioxide increase of the last century, said Ramanathan. It likely has measurable effects on a variety of other physical and biological conditions in the areas of the Pacific over which the particulate pollution passes.

"We have to find out if this amplification is just restricted to spring time or is happening through out the year," Ramanathan says.

Scripps Oceanography researchers Greg Roberts and Guillaume Mauger, and Iowa’s Gregory Carmichael and Youhua Tang also took part in the study.

The National Science Foundation, the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission funded the work.

Peter Weiss | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>