Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun-warmed air pollution flows east from Asia

15.03.2007
Most of the atmosphere-warming soot transported at high altitudes over the West Coast in spring comes from Asia, a new study estimates. That continent generates more than 75 percent of the high-flying contamination, which is a type of particulate pollution known as black carbon.

By absorbing sunlight, black-carbon particles heat the upper atmosphere while also reducing radiation at the surface. The new data indicates that the warming is winning out.

"The soot heating of the atmosphere exceeds the surface dimming and, as a result, the long-range, transported soot amplifies the global warming due to increase in carbon dioxide," says Professor V. Ramanathan at the Scripps Institution of Oceanography, UC San Diego. He and Scripps graduate student Odelle Hadley led the study, published online today in the Journal of Geophysical Research (Atmospheres). Other scientists at Scripps and the University of Iowa, Iowa City, also contributed to the study.

The black carbon transported from Asia in spring equals 77 percent of the black carbon emitted into the troposphere from North America during that season, the team also finds. The researchers used computer simulations and measurements of pollution taken in March and April of 2004 at the surface and at various elevations. Mostly soot, black carbon comes from automobile exhaust, agricultural burning and other sources.

Although the transported black-carbon pollution is an extremely small component of air pollution at land surface levels, it has a significant heating effect on the atmosphere at altitudes above two kilometers (7,000 feet). The particles influence the Pacific Ocean region, which drives much of Earth’s climate. "That’s the primary concern we have with these aerosols," said Hadley. "They can really affect global climate."

In a follow-on study funded by the California Energy Commission (CEC), Hadley, Ramanathan, and fellow Scripps climate scientist Craig Corrigan--who is also a coauthor on the black-carbon transport study--are now investigating how much carbon might be incorporated into precipitation. The study will also examine potential consequences for melt rates of snowpack in California’s Sierra Nevada mountains. Results from that study are expected by the end of this year.

The newly reported measure of black-carbon influx from Asia "is a startling finding by itself, but its potential importance is magnified by the fact that black carbon is believed to have a disproportional impact on regional climate," said Guido Franco, technical lead for climate-change research at the CEC’s Public Interest Energy Research (PIER) program.

The black-carbon investigators compared predictions from a computer model called the Chemical Weather Forecast System (CFORS) to rarely available, in-flight data collected over the Eastern Pacific Ocean and to surface data from 30 West Coast meteorological stations.

Transport of Asian black carbon peaks in the spring when cold Arctic fronts dip to lower latitudes and loft warmer air to higher levels in the atmosphere. The eastward flow of the contaminants is part of a worldwide transport of aerosols, which remain aloft at high altitudes for up to two weeks.

Black carbon concentrations diminish as the pollution moves farther away from its sources in cities and farmlands in countries like China and India. However, over the Pacific Ocean, the particles are in sufficient concentration to have a warming effect on the upper atmosphere of between 2.04 and 2.55 watts per square meter, a prediction based on output from other computer models besides CFORS. By contrast, the black-carbon-induced dimming at the surface amounts to only -1.45 to -1.47 watts per square meter.

On a regional level, the amount of warming, or positive radiative forcing, the black carbon causes in the skies over the Pacific is about 40 percent of that attributed to the carbon dioxide increase of the last century, said Ramanathan. It likely has measurable effects on a variety of other physical and biological conditions in the areas of the Pacific over which the particulate pollution passes.

"We have to find out if this amplification is just restricted to spring time or is happening through out the year," Ramanathan says.

Scripps Oceanography researchers Greg Roberts and Guillaume Mauger, and Iowa’s Gregory Carmichael and Youhua Tang also took part in the study.

The National Science Foundation, the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission funded the work.

Peter Weiss | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>