Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide and the ocean

12.03.2007
Hurricane can form new eyewall and change intensity rapidly

Hurricanes can gain or lose intensity with startling quickness, a phenomenon never more obvious than during the historic 2005 hurricane season that spawned the remarkably destructive Katrina and Rita.

Researchers flew through Rita, Katrina and other 2005 storms trying to unlock the key to intensity changes. Now, data from Rita is providing the first documented evidence that such intensity changes can be caused by clouds outside the wall of a hurricane's eye coming together to form a new eyewall.

“The comparison between Katrina and Rita will be interesting because we got excellent data from both storms. Rita was the one that showed the eyewall replacement,” said Robert Houze Jr., a University of Washington atmospheric sciences professor and lead author of a paper detailing the work in the March 2 edition of the journal Science.

“The implication of our findings is that some new approaches to hurricane forecasting might be possible,” he said.

Houze and Shuyi Chen, an associate professor of meteorology and physical oceanography at the University of Miami Rosenstiel School of Marine and Atmospheric Science, lead a scientific collaboration called the Hurricane Rainband and Intensity Change Experiment. The project is designed to reveal how the outer rainbands interact with a hurricane's eye to influence the storm's intensity. Chen is a co-author of the Science paper, as are Bradley Smull of the UW and Wen-Chau Lee and Michael Bell of the National Center for Atmospheric Research in Boulder, Colo.

The project is the first to use three Doppler radar-equipped aircraft flying simultaneously in and near hurricane rainbands. The project also uses a unique computer model developed by Chen's group at the Rosenstiel School.

“The model provided an exceptionally accurate forecast of eyewall replacement, which was key to guiding the aircraft to collect the radar data,” Chen said.

A hurricane's strongest winds occur in the wall of clouds surrounding the calm eye. The researchers found that as the storm swirled into a tighter spin, a band of dry air developed around the eyewall, like a moat around a castle. But while a moat protects a castle, the hurricane's moat eventually will destroy the existing eyewall, Houze said. Meanwhile, outer rainbands form a new eyewall and the moat merges with the original eye and the storm widens, so the spin is reduced and winds around the eye are slowed temporarily, something like what happens as a figure skater's arms are extended. But the storm soon intensifies again as the new eyewall takes shape.

“The exciting thing about the data from Rita is that they show that the moat is a very dynamic region that cuts off the old eye and establishes a wider eye,” Houze said. “It's not just a passive region that's caught in between two eyewalls.”

Hurricane forecasters in recent years have developed remarkable accuracy in figuring out hours, even days, ahead of time what path a storm is most likely to follow. But they have been unable to say with much certainty how strong the storm will be when it hits land. This work could provide the tools they need to understand when a storm is going to change intensity and how strong it will become.

Scientists already knew that intensity can change greatly in a short time – in the case of Rita the storm grew from a category 1, the least powerful hurricane, to a category 5, the most powerful, in less than a day. Aircraft observation of the moat allowed scientists to see Rita's rapid loss of intensity during eyewall replacement, which was followed by rapid intensification.

“Future aircraft observations focused in the same way should make it possible to identify other small-scale areas in a storm where the processes that affect intensity are going on, then that data can be fed into high-resolution models to forecast storm intensity changes,” Houze said.

That understanding could prove valuable for coastal residents deciding whether a storm is powerful enough to warrant their seeking safety farther inland. Rita and Katrina, among the six most intense Atlantic hurricanes ever recorded in terms of the barometric pressure within the core of the storm, struck just three weeks apart in August and September 2005, together resulting in some 2,000 fatalities and more than $90 billion in damage along the Gulf of Mexico coastline. The most-intense Atlantic storm ever recorded, Wilma, also struck in the record-setting 2005 hurricane season, which produced 15 hurricanes, including a fourth category 5 storm, Emily, and a category 4 storm, Dennis.

The National Oceanic and Atmospheric Administration provided two research aircraft for the project and the third was provided by the U.S. Navy and funded by the National Science Foundation.

The planes flew several novel flight paths, including a circular track in Rita's moat, to gather information from the edges of rainbands and other structures in the hurricane.

“We used a ground-control system with a lot of data at our fingertips to focus the aircraft into places in the storm where there were processes happening related to intensity changes,” Houze said.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions.

Ivy Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>