Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leicester Researcher To Lead Global Team Tackling Carbon ‘Time-Bomb’

09.03.2007
A leading environmental researcher at the University of Leicester is to head an international team to protect an area that stores up to 70 billion tonnes of carbon.

Dr Susan Page, of the Department of Geography, has been awarded 458,000 Euros funding from the European Commission for the international project involving partners from Indonesia, Malaysia, Vietnam, Holland, Finland and the UK.

The CARBOPEAT project will investigate the Carbon-Climate-Human Relationships of Tropical Peatlands.

Dr Page said: “These peatlands are carbon-dense ecosystems that are extremely vulnerable to destabilisation through human and climate induced changes.

“Located mainly in Southeast Asia, they store 50-70 billion tonnes of carbon (3% global soil carbon) but poor land management practices and fire, mainly associated with plantation development and logging, are releasing some of this carbon and contributing to greenhouse gas emissions.

“The CARBOPEAT project will identify key issues and critical gaps in our understanding of tropical peatland carbon dynamics, analyse implications for policy, and formulate guidelines for optimizing the tropical peat carbon store that can be understood readily by policy makers and decision takers in both European and Southeast Asian countries.

“It is anticipated that the project will contribute to future UNFCCC (UN Framework Convention on Climate Change) discussions on reducing global carbon emissions. “

At a kick-off meeting of the project partners held in the University of Leicester, Dr Page said: “I have been involved in several research projects investigating the ecology of tropical peat swamps, but with the CARBOPEAT project we now have the opportunity to present our findings to a wider audience.

“Tropical peatlands are a globally significant source of carbon emissions to the atmosphere. Hopefully, through this project, we can promote urgent international action to enable Southeast Asian countries to conserve their peat resources better”.

Prof. Harri Vasander from the University of Helsinki, Finland agreed: “Now is the time to utilise our research data to demonstrate how globally important tropical peatland really is, especially in terms of its impact on the global climate. Over the last ten years many people have only been aware of this ecosystem when choking haze from peatland fires has engulfed Southeast Asia. We want to bring the value of tropical peatlands to the forefront of policy makers’ thinking, even after the peatland fires have died down.”

His colleague, Dr Jyrki Jauhiainen, also from the University of Helsinki, added: “The CARBOPEAT project can make an important contribution by informing land managers on the best ways to prevent further carbon losses”.

Colleagues from Malaysia, Indonesia and Vietnam will be organising several major events at which the profile of tropical peatlands will be raised. Prof. Bostang Radjagukguk, a soil scientist from Universiti Gadjah Mada, in Yogyakarta, Indonesia, is preparing for the first project congress, which will be held at the end of August this year. “We have just received information that the congress may be attended by the Vice-President of Indonesia. This demonstrates the high level of commitment that the Government of Indonesia is paying to the environmental value of its natural resources, including peatlands.”

In 2008, the CARBOPEAT project will be organising a second regional congress hosted by Universiti Malaysia Sarawak. Representing his university, Professor Wan Sulaiman said “We are engaged in a number of research and educational activities to raise the profile of our country’s peatland resources. We look forward to hosting a major international event on the dynamics of the tropical peatland carbon-climate-human system at which we can investigate the opportunities for improved land management. Information disseminated through CARBOPEAT will not only provide valuable guidelines but also reinforce some of the initiatives undertaken by Southeast Asian countries like Malaysia and Indonesia in the rehabilitation and restoration of degraded peatlands. One exciting dimension is the commitment to increase stakeholder awareness on how wise use and restoration efforts contribute to increased carbon sequestration that in turn will have a positive effect on global climate. It also brings to the forefront information on current and future international conventions that can influence government policy directions on peatlands”.

Dr Henk Wosten, from Wageningen University and Research Centre, said: “With CARBOPEAT we are in an excellent position to propel the necessary actions so that informed decisions on the management of tropical peatlands can be taken by policy makers”.

Detailed studies carried out by Dr Page and others over more than 10 years have shown that tropical peat swamp forest has an abundance of plants and animals, including the endangered orang-utan, and that the peatlands perform a range of valuable services, such as water storage, flood prevention and carbon storage.

The forest contains a number of valuable timber-producing trees plus a range of other products of value to local communities, such as bark, resins and latex. Tropical peatlands are, however, being deforested and drained at a rapid rate. The problems that result from development of tropical peatland stem mainly from a lack of understanding of the complexities of this ecosystem and the fragility of the relationship between peat and forest. In its natural state tropical peatland is a vast, globally-important carbon sink which locks away the greenhouse gas CO2. But once the carbon allocation to the system is discontinued by forest removal and the peat is drained, the surface peat oxidises and loses stored carbon rapidly to the atmosphere. This results in progressive subsidence of the peat surface, leading to flooding, and contributes to climate change.

The CARBOPEAT project will play a critical role in bringing this information to a wider audience by providing sufficient information and insight on tropical peat and peatland to enable stakeholders to understand this ecosystem and its derivatives better, to anticipate problems before they arise and to put principles of wise use into effect. It will bring together international peatland scientists, policy makers and decision takers from the EU and DCs and other stakeholders in Southeast Asia to analyse the problems and potential of peat carbon globally, with an emphasis on Southeast Asia where most tropical peatland is located and the biggest problems are occurring.

Professor Jack Rieley of the University of Nottingham, who has studied the ecology and natural resource functions of tropical peatlands, commented that: “Peat swamp forests in Southeast Asia are one of the last wildernesses on this planet with a large reservoir of biodiversity and carbon, both of which are being destroyed needlessly without producing socio-economic benefits.”

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>