Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atoms under the mantle

08.03.2007
At a depth of 2900 kilometres, the layer between the Earth's mantle and its core has always intrigued geophysicists because they are unable to explain the seismic data it generates. Researchers in the Solid State Structure and Properties Laboratory (CNRS/Université Lille 1/Lille National School for Advanced Chemistry) have studied its deformation which influences convection movements within the mantle or even those by tectonic plates.

Despite the inaccessibility of this layer and the extreme conditions which prevail, they have succeeded in modelling the defects responsible for its deformation. These results, obtained using a novel approach which combines numerical calculus and quantum mechanics, constitute the first step towards modelling deformation of this layer and its effects on the mantle. They are published in the March 1st, 2007 issue of Nature.

Direct access to the Earth's interior is impossible: even the deepest bore holes are only scratches on the surface. Our knowledge of the Earth's interior comes from studying the seismic waves which propagate through the Earth from the focus of an earthquake. We know today that the Earth is divided into layers. The crust on which we live only represents a thin skin. The main shell is called the mantle, a layer made up of solid rock which extends to a depth of up to 2900 kilometres. It surrounds the liquid core which in turn shields the solid core, with a radius of 1200 kilometres. The interface between the mantle and the core, called the D" layer, has long intrigued geophysicists because they are unable to explain the seismic data it generates.

From a mineralogical point of view, 80% of the terrestrial mantle is made up of a silicate (MgSiO3) with a crystalline, perovskite structure. This mineral accounts for half of the Earth's mass. In 2004, several teams (notably from Japan) showed that perovskite became unstable near the core-mantle interface to form a new phase, or post-perovskite. Could post-perovskite deformation explain the seismic signature of the D" layer?

Patrick Cordier and his colleagues based themselves on this hypothesis. But how could a crystalline solid be deformed? The answer lies at the atomic scale: the crystals contain defects called dislocations, which are responsible for plastic deformation. Although their structure is relatively well understood in simple materials such as certain metals (copper, aluminium, etc.), the scientists had little knowledge of the structure of dislocations in complex materials such as minerals, particularly under extreme conditions of pressure. The team in Lille employed a novel approach: instead of reproducing the conditions prevailing inside the Earth in the laboratory, they used a simulation method by injecting the results of quantum mechanics into a numerical model to render it simpler. They are the first to have thus modelled dislocations at the atomic scale for complex materials under extremely high pressure.

The dislocations of which we now know the structure move within the crystal and interact between each other. Scientists thus have access to calculation codes which allow them to describe these interactions. They now want to clarify the behaviour of each grain of crystalline matter, then of the rock and beyond that, of the mantle. A dream? Maybe not. The advances achieved in recent years allow us to be optimistic. So perhaps our voyage to the centre of the Earth will be numerical.

Monica McCarthy | EurekAlert!
Further information:
http://www.crns.fr

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>