Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature lab ice spikes may hold clues to warming impacts on glaciers

07.03.2007
Tiny lab versions of 12-foot tall snow spikes that form naturally on some high mountain glaciers may someday help scientists mitigate the effects of global warming in the Andes, according to a University of Colorado at Boulder professor.

CU-Boulder physics Assistant Professor Meredith Betterton said the spikes, known as penitentes, are shaped when concentrated rays of sunlight evaporate snow from low spots on glacier fields in a process known as sublimation. The lab studies confirm that the low spots, or troughs, deepen as intense sunlight strikes them, sculpting penitentes by the hundreds of thousands on some glaciers, she said.

Some scientists have predicted that penitentes might help put the brakes on shrinking glaciers in a warming climate by blocking sunlight that might otherwise be absorbed by glacial surfaces, said Betterton. She gave a presentation on penitentes at the March Meeting of the American Physical Society in Denver March 5-9, which hosted more than 7,000 scientists.

"The key piece of physics here is that the dips in the snow absorb more reflected light, which drops the snow height and helps to form the penitentes," she said. "One big question is how penitentes will fare in a warming world."

Betterton, along with colleagues Vance Bergeron and Charles Berger from Ecole Normale Superieure research laboratories in Paris, sprouted miniature penitentes in the lab to better understand the physics behind their formation. Penitentes -- named for their resemblance to a procession of white-hooded monks -- were first described by naturalist Charles Darwin during an expedition to South America he and his crew made in 1835 aboard his ship, the Beagle.

The research team put a block of snow in a horizontal freezer in Paris filled with water vapor and chilled with liquid nitrogen, covered it with a clear Plexiglas lid, and shined a spotlight on the snow to simulate sunlight, Betterton said. Tiny snow spikes up to two inches high formed within a few hours, apparently by the same process through which penitentes form naturally on alpine glaciers, she said.

The study confirmed previous theories that penitentes grow when sunlight in cold, dry air in the high mountains strikes snow patches and transforms them directly into water vapor, she said. Mathematical models developed by Betterton indicate microscopic penitentes begin merging with each other, or "coarsening," early in the sublimation process, growing both taller and wider over time.

The research has applications for understanding and even mitigating global warming, since Andean penitentes shade large areas of glacial surfaces, possibly cooling them and slowing the rate of ice loss, she said. Some scientists believe warming temperatures could trigger the eventual destruction of vast fields of penitentes and hasten glacier melting, "which would be disastrous for Argentinean and Chilean regions that depend on runoff for water supplies," said Betterton.

Betterton and her colleagues took the research a step further, sprinkling the sprouting lab penitentes with a fine layer of carbon soot to simulate pollutants known to be accumulating on some glaciers around the globe. Such carbon-based pollutants have been found to increase melting rates on glaciers by causing the ice to absorb more sunlight and heat up, she said.

The team found that small amounts of soot sprinkled on the snow in the lab appeared to accelerate penitente formation. "One worry that scientists have is that without penitentes, some of these Andean glaciers will melt more quickly," she said. "It may well be that adding a small layer of dirt to the surface of these glaciers could help to preserve them."

The penitente research effort also has implications for the microelectronic industry, she said. Precisely shaped micro-penitentes formed by laser beams could lead to the development of solar energy cells that trap light more efficiently.

Meredith Betterton | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>