Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Detects Trends in Rainfall Traits from Drizzles to Downpours

07.03.2007
Breaking news in recent years has been swamped with stories of extreme weather -- flash floods in East Asia, prolonged drought in Africa, destructive hurricanes like Hurricane Katrina, heavy monsoon rainfall in South Asia, and an historic heat wave in Europe.

The effects of these weather crises have been devastating, and their frequency seemingly on the rise. With an understanding that the societal effect of increased rainfall is huge, researchers have had a key question at the center of a debate among them: Are rain-producing weather events increasing worldwide, and if so, what is the relationship, if any, between their growth and climate change?

To detect long-term global rainfall trends, scientists have to overcome major challenges. Since two-thirds of the Earth is covered by oceans, estimating oceanic rainfall relies on satellite remote sensing. However, satellite rainfall estimates are well known to have large uncertainties, because they depend on algorithms derived from assumptions based on incomplete knowledge of the physics of rainfall. Also, long-term rainfall records may have consistency problems because they are made up of segments from different sensors on different satellite orbits, each having their own measurement features.

Therefore, up to now, detection of long-term global rainfall has been considered a "mission impossible," yet the need to know whether trends in rainfall exist is urgent because of how enormously it affects people everywhere. A recent NASA study published in the International Journal of Climatology in January resolves this problem by using a new technique to confirm that extremely heavy rainfall in the tropics is indeed on the rise as suspected.

Researchers used a technique based on the concept of a "probability distribution function" (PDF), a measure of the likelihood that rain will fall with a given intensity over a given area and for a chosen period of time (for example, the entire tropics over 25 years from 1979 to 2003 for this study. The authors then computed the trend for each rain intensity level, ranging from very light to extremely heavy rain. What they found was that the trends showed a systematic pattern, i.e., positive for heavy and light rain, and negative for moderate rain. Essentially, they found there is a noticeable change in the PDF, even though the mean rainfall does not change very much.

"This study makes for a very compelling story in solving a science puzzle," said William Lau, chief of the Laboratory for Atmospheres at NASA's Goddard Space Flight Center, Greenbelt, Md., and a climatologist who is the senior author of the study. "We did this by simply asking the right question. The technique is actually very simple. Instead of looking at trends in total rain, we look for possible signals in different categories of rain, defined by its intensity. It's changes in the traits that make up total rainfall that are most telling, not necessarily total rainfall itself."

Lau and his coauthor used data from both the Climate Precipitation Center's Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP), which blends outdoor rain gauges and rainfall estimates culled from satellite algorithms. They also used data from independent historical gauge records, and from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to confirm and interpret their results. Their study is focused on the tropics. Their results show that even though there are discrepancies in total rainfall, the change in the characteristics of rainfall are consistent among all the sets of data they looked at.

"Simply put, I'd compare this problem to trying to figure out why your bank account has an apparent error compared to your own records. You'd review the individual items affecting the total balance to see whether certain withdrawal or deposit items were smaller or larger than you'd believed," said Lau, an expert in atmospheric dynamics with an emphasis on tropical climates. "By doing so, you may be able to find a 'pattern' that tells you whether it is your income, your spending habits, or whether it is the bank that actually messed up your balance. Our goal has been to find out what causes the large credits and debits that are throwing the balance off. We must use this itemized approach to solve the rainfall estimation problem, because we know the rain total (the net balance) is wrong.

"The individual items count in solving this puzzle," Lau added. "Because drizzles occur more frequently, and are associated with clouds that cover large areas, they can control the radiance energy from the sun more effectively. That makes drizzles just as important as downpours and the range of rainfall in between."

Taken separately, neither TRMM data alone, available for only the last 10 years, nor data from other satellites available only as far back as 1979, are long enough to confirm a relationship between rainfall and climate change, which requires at least 30-40 years of consistent data. According to Lau, it's asking the right question, using the right methodology, and a combination of information sources that has given researchers a clear picture of how rainfall is changing in a warmer climate.

"It's the small signals in rainfall that tell us the big things," said Lau.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>