Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment wedge key to glacial environmental stability

05.03.2007
A wedge of sediment, pushed up by glacial movement, may be a buffer against moderate sea level rise, pointing to ocean temperature rise as the key factor in glacial retreat, according to two papers published today (March 1) in Science Express.

"Sediment beneath ice shelves helps stabilize ice sheets against retreat in response to rise in relative sea level of at least several meters," says Richard Alley, the Evan Pugh professor of geosciences, Penn State. "Large sea level rise, such as the more than 325 feet at the end of the last ice age, may overwhelm the stabilizing feedback from sedimentation, but smaller sea-level changes are unlikely to do the same."

The researchers identified a sediment wedge beneath the Whillans Ice Stream in Antarctica using snowmobile-towed radar where ice from the Whillans Ice Stream in West Antarctica begins to float in the Ross Sea forming the Ross Ice Shelf. They report this research in Science Express in the article "Discovery of Till Deposition at the Grounding Line of Whillans Ice Stream."

The radar imaged a miles-long pile of sediments as thick as 100 feet deposited beneath the Ross Ice Shelf over the last 1000 years. The sediments are eroded out of the ground by the moving ice sheet that then drags them along and deposits them in a wedge-shaped delta.

"We found this miles-long pile of deposited sediment just where the ice stream goes afloat," says Sridhar Anandakrishnan, associate professor of geosciences, Penn State. "This showed us that sediment transport beneath the ice plays an important role in determining the size of this ice stream."

Antarctic glaciers form over the Antarctic land mass and glacial ice streams flow toward the oceans. When the edge of the glacier flows past the edge of land, that portion of the glacier begins to float and forms an ice shelf. Portions of ice shelves occasionally calve off and float into the oceans. Previous research suggested that rising sea level would push back the grounding line -- the line where grounded glacier and ice shelf meet -- shrinking the glaciers.

"Our results suggest that the grounding line is well above the point at which the ice floats and will tend to remain in the same location even though sea level changes, until sea level rises sufficiently to overcome the effect of the sediment wedge," says Anandakrishnan. "We determined the grounding line location from the drop in ice surface elevation, which was 33 feet over only about 2 miles."

According to the researchers, "the grounding-line position has probably been stable near the present position for a millennium."

Anandakrishnan and colleagues note that the wedge depicted by radar imaging closely matches wedges found beyond the floating Ross Sea on the ocean bottom. These wedges are those left at the glacial maximum and as the glaciers retreated to their present day location, indicating that this wedge formation is a natural part of ice stream movement. "The modern grounding line occurs where the bed falls away rather than where the ice thins," says Anandakrishnan.

The Science Express paper, "Effect of Sedimentation on Ice-Sheet Grounding-Line Stability," suggests reasons why the sediment wedge provides stability against the increase or decrease of a few meters or more of sea-level change.

The researchers used three different ice-flow models to first model the configuration approximating the Whillans Ice Stream and the adjacent Ross Ice Shelf assuming a flat glacial bed. After the ice streams stabilized, they instantaneously added a wedge of sediment similar to that located by the radar.

The response of these models to instantaneous sea-level rise, both with and without the sediment wedge, showed that without the sediment wedge, the ice shelf forms at the point where the ice thins; however, with the sediment wedge, the ice shelf forms where the bed falls away.

"In all three models, sea-level rise without a wedge causes grounding-line retreat," says Alley. "With the wedge, the ice over the wedge thickens to above flotation mass so that small increases in sea-level cause only small grounding line retreat which never reaches the point where the ice over the wedge floats."

However, large sea-level increase could push the grounding-line much farther back, allowing the ice above to float and the glacier as a whole to retreat. Further calculations indicate that a sea-level rise of more than 33 feet may be required to force the ice to retreat from the wedge.

"Our results, together with recent evidence that ice shelves respond sensitively to ocean-temperature changes and quickly propagate the response inland, point to greater importance of other environmental variables, and especially sub-ice-shelf temperatures," says Alley.

The researchers caution that sea level may be the primary control on the ice sheet if other variables that affect ice sheets more quickly, such as water temperature under ice shelves, remain stable.

"Common climatic forcing, including an increase in ocean temperatures, which can have very large and very rapid effects on ice sheets, is more likely to cause Antarctic glacial retreat," says Alley.

Floating ice shelves around Antarctica run aground on submerged islands. Friction from the islands helps hold back the ice behind. Warming of the water beneath the ice shelf of only one degree Fahrenheit increases the melt rate of the floating ice by almost 20 feet per year. The melting reduces friction with the islands, letting the ice flow faster. The resulting decrease in ice may be enough to allow the ice to float free of the sediment wedge, shrinking the ice sheet and raising sea level.

"Recent discoveries, including the changing lakes beneath the ice that flows into the Ross Ice Shelf, show that the great ice sheet still has many mysteries," says Alley. "Understanding these mysteries will be necessary to predict the behavior of the great ice sheet in a warming world."

Vicki Fong | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>