Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron in Northwest rivers fuels phytoplankton, fish populations

02.03.2007
A new study suggests that the iron-rich winter runoff from Pacific Northwest streams and rivers, combined with the wide continental shelf, form a potent mechanism for fertilizing the nearshore Pacific Ocean, leading to robust phytoplankton production and fisheries.

The study, by three Oregon State University oceanographers, was just published by the American Geophysical Union in its journal, Geophysical Research Letters.

West coast scientists have observed that ocean chlorophyll levels, phytoplankton production and fish populations generally increase in the Pacific Ocean the farther north you go (from southern California to northern Washington). No one has a definitive explanation for the increase, the OSU scientists say, though some researchers have suspected river runoff may play a role. That theory has generally been discounted, they added, because river flows are low in the summer when phytoplankton blooms occur.

In their study, however, the OSU scientists found that Northwest rivers churn out huge amounts of iron in the winter and deposit it on the continental shelf, where it sits until the spring and summer winds begin the ocean upwelling process. The authors studied the relationships between phytoplankton, river runoff and shelf width all along the West Coast.

"If we consider just river flows or shelf width by themselves, they explain part of the northward increase in productivity," said Zanna Chase, an assistant professor in OSU’s College of Oceanic and Atmospheric Sciences and lead author of the study. "But if we analyze both together, they provide a more complete picture. The shelf increases in width as you move north. If the shelf wasn’t there, the iron from rivers would be lost to the open ocean.

"Our shelf acts as a ‘capacitor,’" she added, "storing the iron for the high-productivity upwelling season."

In their studies, the OSU scientists sampled water from Oregon rivers in the winter and found iron concentrations that were roughly 1,000 times higher than that found in samples of sea water taken from the Pacific Ocean off Oregon. And though previous studies, based on East Coast rivers, have suggested that almost all of the iron in rivers gets trapped in estuaries, this latest study found very different results for Oregon rivers in winter.

The researchers measured iron, ammonium, silicate and salinity levels at the mouth Alsea River during the winter, and tracked how much of it went into the ocean, said Burke Hales, an OSU associate professor of oceanic and atmospheric sciences.

The answer: more than half.

"Iron just doesn’t like to be dissolved," Hales said, "especially in sea water. When fresh water meets salt, almost all of the iron sticks to particles that sink to the floor of the continental shelf, waiting for the winds to trigger upwelling. In contrast, Monterey, Calif., has a very narrow shelf and if you step off the beach it almost immediately goes to 6,000 feet deep."

Chase said there doesn’t seem to be a direct relationship between the amount of winter runoff in Northwest streams and the level of phytoplankton production the following summer, indicating the broad Northwest shelf is storing more iron than the phytoplankton need in any given year. As a result, she added, phytoplankton production off the Oregon coast doesn’t seem to be limited by a lack of iron, whereas their cousins off central California – where river flow and shelf width are much less than off Oregon – are "iron-starved" in comparison.

The iron from the Northwest’s winter runoff is trapped on the continental shelf in the winter by downwelling winds that create an oceanographic circulation barrier that prevents the iron from being transported into the open ocean. The Columbia River also plays a role, spilling out into the Pacific and turning north in the winter, further pinning the iron deposits in Washington’s nearshore waters.

Further research is needed to test how much iron is stored in the sediments on Oregon’s continental shelf, the scientists say, and how much gets used during a typical season of upwelling.

"We probably have several years of iron stored out there," Hales pointed out, "but we don’t know whether ‘several’ means five, 10 or 50 years."

The importance of iron as a catalyst for ocean productivity invariably raises the question of whether humans can ‘fertilize’ the oceans to boost phytoplankton growth. All three of the authors have been involved in research in the Southern Ocean off Antarctica that tested that concept.

"It’s more complex than simply adding iron to seawater," said Pete Strutton, an OSU assistant professor of oceanic and atmospheric sciences. "Experiments so far have generally shown an increase in productivity that was less than expected – and it didn’t last long. Adding iron also changes the type of phytoplankton that grew, which might have important ecological consequences we don’t yet understand."

The Northwest’s system of iron-rich winter river water, a wide continental shelf, and summer upwelling has the overall effect of making this part of the Pacific Ocean a net "carbon sink" – or sequestering more carbon dioxide than the region produces. The ocean off central California, by contrast, "seems to be poised between a carbon source and a sink, depending on the year," Strutton said.

Zanna Chase | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>