Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A climate-change amplifying mechanism

28.02.2007
During the past ninety thousand years there were alternating hot and cold periods lasting several thousand years each which resulted in a modification of global oceanic circulation.

With the help of paleoclimatic and paleooceanographic indicators, scientists at CEREGE1 have highlighted a feedback mechanism of ocean circulation on the climate which reinforces this heating or cooling.

This mechanism relies on a close link between the circulation of the North Atlantic and the tropical hydrology of Central America. This study, published in the February 22, 2007 edition of the review Nature, should allow us to better understand and therefore better predict the effects of climate change on oceanic circulation.

In the past, major and rapid climatic variations which took place notably during the last glacial period (Heinrich period) disturbed ocean circulation. Climatic archives (marine and lake sediment, polar ice, stalagmites) show the close relationship existing between climatic variations and oceanic circulation. Changes in oceanic circulation in the North Atlantic have influence on a planetary level by affecting, in particular, the water cycle. These changes are accompanied by a shift in the climatic equator which separates the trade wind systems of the two hemispheres: southwards during cold events and northwards during hot ones.

Central America, a narrow continental strip which separates the Atlantic and Pacific oceans, plays a key role in this system. On the Atlantic side surface waters evaporate, which increases salinity. The water vapour is transferred by the trade winds to the Pacific where it is deposited as rain, thus lowering salinity there. This enormous transfer of water (several hundred thousand cubic meters per second) maintains a contrast in salinity between the two oceans. The surface waters of the tropical Atlantic are then transported, via the Gulf Stream, towards the high latitudes where they warm the atmosphere before plunging into the abysses in the convection zones situated in the seas of Norway, Greenland and Labrador. The deep waters formed by this process then flow into the world ocean, purging the North Atlantic of part of its excess salt.

The scientists at CEREGE1 reconstituted the variations in surface water salinity in the area where the water vapour coming from the Atlantic is deposited. To do this they worked on the measurements taken in marine sediments collected in 2002 west of the Isthmus of Panama by the French oceanographic ship the Marion Dufresne. This study shows that the cold Heinrich periods correspond to increases in salinity in the east Pacific. This is synonymous to a decrease in the transfer of water vapour. By comparing their results to other studies done in the Atlantic sector and in South America, the scientists were able to describe a feedback mechanism which amplified the climatic disturbance. During cold periods the trade winds, loaded with humidity, migrated southwards. Unable to cross the Andes part of the rain, which would normally have lowered the salinity of the East Pacific, fell in the Amazon basin. This feedback had the effect of re-injecting rainwater into the Atlantic, thereby decreasing the ocean’s salinity. This water was then transported to the higher latitudes, contributing to the weakening of deep oceanic circulation, thereby reinforcing the cooling above and around the North Atlantic.

Today, the fact that global warming could disturb the water cycle and lead to a slowing down of the North Atlantic circulation is a real subject of concern. Oceanographic data from the last 50 years suggest that hydrographic changes (temperature and salinity) as well as a lessening of the flow of water transported by certain surface and deep-sea marine currents have already occurred in the North Atlantic. The risk of an even greater variation of oceanic circulation by the end of this century or the beginning of the next needs to be taken seriously and actively studied.

Monica McCarthy | EurekAlert!
Further information:
http://www.cnrs-dir.fr

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>