Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists point at climate changes as the cause of the Neanderthal extinction in the Iberian Peninsula

28.02.2007
Climate – and not modern humans – was the cause of the Neanderthal extinction in the Iberian Peninsula. Such is the conclusion of the University of Granada (Universidad de Granada) research group "RNM 179 - Mineralogy and Geochemistry of sedimentary and metamorphic environments", headed by professor Miguel Ortega Huertas and whose members Francisco José Jiménez Espejo, Francisca Martínez Ruiz and David Gallego Torres work jointly at the department of Mineralogy and Petrology of the UGR [http://www.ugr.es] and the Andalusian Regional Institute of Earth Sciences (CSIC-UGR).

Together with other scientists from the Gibraltar Museum, Stanford University and the Japan Marine Science & Technology Center (JAMSTEC), the Spanish scientists published in the scientific journal Quaternary Science Reviews an innovative work representing a considerable step forward in the knowledge of human ancestral history.

The results of this multidisciplinary research are an important contribution to the understanding of the Neanderthal extinction and the colonisation of the European continent by Homo Sapiens.

During the last Ice Age, the Iberian Peninsula was a refuge for Neanderthals, who had survived in local pockets during previous Ice Ages, bouncing back to Europe when weather conditions improved.

Climate reconstructions

The study is based upon climate reconstructions elaborated from marine records and using the experience of Spanish and international research groups on Western Mediterranean paleoceanography. The conclusions point out that Neanderthal populations did suffer fluctuations related to climate changes before the first Homo Sapiens arrived in the Iberian Peninsula. Cold, arid and highly variable climate was the least favourable weather for Neanderthals and 24,000 years ago they had to face the worst weather conditions in the last 250,000 years.

The most important about these data is that they differ from the current scientific paradigm which makes Homo Sapiens responsible for the Neanderthal extinction. This work is a contribution to a new scientific current – leaded by Dr. Clive Finlayson, from the Gibraltar Museum – according to which Neanderthal isolation and, possibly, extinction were due to environmental factors.

These studies on climate variability are part of the work of the group RNM 179, funded by the excellence project RNM 0432 of the Andalusian Regional Government’s Department for Innovation, Science and Business and by the MARCAL project of the Spanish Ministry of Education and Science, both linked to the Andalusian Environment Centre (CEAMA - Centro Andaluz de Medio Ambiente).

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>