Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Study Finds Warmer Future Could Bring Droughts

15.02.2007
NASA scientists may have discovered how a warmer climate in the future could increase droughts in certain parts of the world, including the southwest United States.

The researchers compared historical records of the climate impact of changes in the sun's output with model projections of how a warmer climate driven by greenhouse gases would change rainfall patterns. They found that a warmer future climate likely will produce droughts in the same areas as those observed in ancient times, but potentially with greater severity.

"These findings strongly suggest that greenhouse gases and long-term changes in solar activity both can have major influences on climate via similar processes," said Drew Shindell, NASA Goddard Institute for Space Studies, New York. Shindell is lead author of a paper that appeared in the Dec. 27, 2006, issue of the American Geophysical Union's "Geophysical Research Letters."

"There is some evidence that rainfall patterns already may be changing," Shindell added. "Much of the Mediterranean area, North Africa and the Middle East rapidly are becoming drier. If the trend continues as expected, the consequences may be severe in only a couple of decades. These changes could pose significant water resource challenges to large segments of the population."

Using the NASA Goddard Institute for Space Studies climate model, researchers found that changes in solar output in the ancient past increased surface warming and altered atmospheric moisture and circulations. These changes likely led to the severe droughts seen in paleoclimate records.

The same model showed that greenhouse-gas warming has similar effects on the atmosphere, suggesting drier conditions may become more common in the subtropics. Rainfall could decrease further in already water-stressed regions such as the southwest United States, Mexico, parts of North Africa, the Middle East, and Australia. Meanwhile, precipitation may increase across the western Pacific, along much of the equator and in parts of southeast Asia.

The computer model considers changes in the oceans, weather, and chemistry of the atmosphere, like ozone concentrations, and accurately reproduced the broad rainfall shifts toward regionally drier or wetter conditions during the past several hundred years. Sunspot and ice core data also link the historical rainfall shifts to variations in the amount of energy released by the sun. Since the size of solar changes is uncertain, the study focused on the location and pattern of precipitation shifts, not their precise amount.

Increases in solar output break up oxygen molecules, raising ozone concentrations in the upper atmosphere. This adds to upper atmospheric heating that leads to shifts in circulations down to the surface. In turn, surface temperatures warm, and the Earth's basic rainfall patterns are enhanced. For instance, in wet regions such as the tropics, precipitation usually increases, while dry areas become more prone to drought since rainfall decreases and warmer temperatures help remove the small amount of moisture in the soil.

"Precipitation is hard to predict because it is so highly variable, but these results increase our confidence that continued warming will be associated with large-scale changes in rainfall," said Shindell.

Researchers also considered numerous tree-ring, fire, and lake sediment records from across the Americas, including Mexico, Peru, and the Yucatan Peninsula. These data are reliable indicators of historical climate and confirm a pronounced increase in drought frequency in the southern United States, Mexico, and other subtropical locations during periods of increased solar output in the past 1,200 years. This long-term record of solar output is based on chemical isotopes whose production is related to the sun's brightness. Conversely, in parts of the tropics, ocean sediment data, key indicators of precipitation changes, reflect increased rainfall.

According to the researchers, the same processes identified by this new research very likely also affected past civilizations, such as the Pueblo people of New Mexico and Arizona who abandoned cities in the 1300s.

Leslie McCarthy | EurekAlert!
Further information:
http://www.nasa.gov/home

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>