Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Study Finds Warmer Future Could Bring Droughts

15.02.2007
NASA scientists may have discovered how a warmer climate in the future could increase droughts in certain parts of the world, including the southwest United States.

The researchers compared historical records of the climate impact of changes in the sun's output with model projections of how a warmer climate driven by greenhouse gases would change rainfall patterns. They found that a warmer future climate likely will produce droughts in the same areas as those observed in ancient times, but potentially with greater severity.

"These findings strongly suggest that greenhouse gases and long-term changes in solar activity both can have major influences on climate via similar processes," said Drew Shindell, NASA Goddard Institute for Space Studies, New York. Shindell is lead author of a paper that appeared in the Dec. 27, 2006, issue of the American Geophysical Union's "Geophysical Research Letters."

"There is some evidence that rainfall patterns already may be changing," Shindell added. "Much of the Mediterranean area, North Africa and the Middle East rapidly are becoming drier. If the trend continues as expected, the consequences may be severe in only a couple of decades. These changes could pose significant water resource challenges to large segments of the population."

Using the NASA Goddard Institute for Space Studies climate model, researchers found that changes in solar output in the ancient past increased surface warming and altered atmospheric moisture and circulations. These changes likely led to the severe droughts seen in paleoclimate records.

The same model showed that greenhouse-gas warming has similar effects on the atmosphere, suggesting drier conditions may become more common in the subtropics. Rainfall could decrease further in already water-stressed regions such as the southwest United States, Mexico, parts of North Africa, the Middle East, and Australia. Meanwhile, precipitation may increase across the western Pacific, along much of the equator and in parts of southeast Asia.

The computer model considers changes in the oceans, weather, and chemistry of the atmosphere, like ozone concentrations, and accurately reproduced the broad rainfall shifts toward regionally drier or wetter conditions during the past several hundred years. Sunspot and ice core data also link the historical rainfall shifts to variations in the amount of energy released by the sun. Since the size of solar changes is uncertain, the study focused on the location and pattern of precipitation shifts, not their precise amount.

Increases in solar output break up oxygen molecules, raising ozone concentrations in the upper atmosphere. This adds to upper atmospheric heating that leads to shifts in circulations down to the surface. In turn, surface temperatures warm, and the Earth's basic rainfall patterns are enhanced. For instance, in wet regions such as the tropics, precipitation usually increases, while dry areas become more prone to drought since rainfall decreases and warmer temperatures help remove the small amount of moisture in the soil.

"Precipitation is hard to predict because it is so highly variable, but these results increase our confidence that continued warming will be associated with large-scale changes in rainfall," said Shindell.

Researchers also considered numerous tree-ring, fire, and lake sediment records from across the Americas, including Mexico, Peru, and the Yucatan Peninsula. These data are reliable indicators of historical climate and confirm a pronounced increase in drought frequency in the southern United States, Mexico, and other subtropical locations during periods of increased solar output in the past 1,200 years. This long-term record of solar output is based on chemical isotopes whose production is related to the sun's brightness. Conversely, in parts of the tropics, ocean sediment data, key indicators of precipitation changes, reflect increased rainfall.

According to the researchers, the same processes identified by this new research very likely also affected past civilizations, such as the Pueblo people of New Mexico and Arizona who abandoned cities in the 1300s.

Leslie McCarthy | EurekAlert!
Further information:
http://www.nasa.gov/home

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>