Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Planetary scientist says: Focus on Europa

Taking the fork in the road

Yogi Berra supposedly suggested that when you come to a fork in the road, you are supposed to take it.

That's just what planetary scientists studying the rich data set from the Galileo Mission to the outer solar system are doing now. They're taking the fork.

According to William B. McKinnon, Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, the community suffers from an embarrassment of riches, because each of the moons of Jupiter differs in the way that they can reveal more about planets and how they behave. But he thinks it is Europa that clearly commands the most attention.

There are four large, moons of Jupiter that in their character and behavior are more like planets than Earth's moon: Io, Europa, Ganymede and Callisto. The last three are icy.

Io's volcanic hyperactivity is well known, but there are mysteries about the temperature of its magmas and its spectacular mountains and what they might reveal about the satellite's interior processes. As for the exterior moon Callisto, how did it acquire an ocean yet not be deeply differentiated? Ganymede's liquid iron core is still generating a magnetic field. This was not predicted beforehand, and thus has much to teach planetary scientists on how magnetic fields are generated in the solar system. Then, there is Europa.

"Of the four Galilean moons, Europa is the one that has the best chance to reveal the most about the origin of life, which is the biggest unanswered scientific question we have, bar none," he said. "With its massive body of liquid water, multiple energy sources proposed and different ways to provide carbon and other biogenic elements, the central question must be Europa's potential for life. What greater question can you ask of a planet?"

McKinnon reviewed each of the moons and their unanswered questions in his invited talk, "O Sister, Where Art Thou? The Galilean Satellites After Galileo," presented at the Fall 2006 meeting of the American Geophysical Union held Dec. 10-15, 2006, in San Francisco. All but Ganymede, a young male, are named after female Greek mythological characters. Thus, McKinnon refers to Ganymede as an honorary sister.

"Europa has been recently geologically active, but because Galileo's main antenna did not unfurl, we did not take enough images to catch any active geysering, such as seen on Saturn's itsy bitsy icy moon, Enceladus," McKinnon said. "Europa's surface appears very young and there are lots of interesting ice tectonics, and surface eruptions with weird colors and spectral signatures whose compositional implications everyone just loves to argue about."

'Capped' ocean

All the accumulated evidence points to an ocean under a global shell of ice, an ocean lying no more than 10 to 20 kilometers below Europa's airless surface, McKinnon said.

"That sounds really deep to a person with a pick ax, or even a drilling rig, but in geologic terms it's really pretty close," he said. "It's basically a capped ocean. "

The existence of the ocean is related to the great amount of heat coming up from Europa's interior.

"If you look at the surface and how deformed it is, you can tell the ice shell is relatively thin and really has been active in recent geological time, indeed is probably active today," McKinnon said.

Europa has a few, but not many, impact craters, also indicating its relative youth.

Europa's ocean begs to be studied, McKinnon said, as do the strikingly colored surface materials that Galileo images captured.

"To go into orbit around Europa with high-resolution cameras, spectral imagers and sophisticated, ice-penetrating radars of the sort mapping Mars right now, would allow us to really characterize that ocean and give us clues about the biogenic potential of the surface materials, "McKinnon said. "We'd see to the bottom of the ice shell, I predict. It would be a fantastic proof of concept."

A mission to Europa is feasible, McKinnon said. It would take about 10 years if started today (six of those years being spent in reaching the satellite). And it would be expensive, "about two billion dollars, give or take," he added.

"It would also have to compete for funds with NASA's plans to establish a Moon base," he said. "The Europeans are interested as well, so maybe we could cooperate and share the cost."

NASA has committees exploring a number of options, McKinnon said, and they include returning to Europa or Titan after the conclusion of the Cassini mission or perhaps returning to the little active moon around Saturn, Enceladus.

"It's a tiny moon, but it has an active plume that, because of that moon's very low gravity, extends well out into space, so you can just fly right through it," McKinnon said. "That's a nifty way to go sampling."

Of course, Europa is a much bigger target to explore.

"It has 40 times the surface area of Enceladus — there's a lot more there there," he concluded.

Tony fitzpatrick | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>