Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researcher to Study Volcanism with Under-Ocean Sensors

07.02.2007
By recording activity where it happens under water, sensors will capture rare data

Earthquakes and volcanic activity occur when the tectonic plates that make up Earth's surface move apart or converge. While this activity is relatively easy to observe on land, it's more difficult to observe under the ocean, where most of it occurs. A University of Missouri-Columbia researcher will soon undertake a study to learn more about this process by placing sensors on a mid-ocean ridge called the East Pacific Rise.

"Right now, we can only listen from land using seismometers, or in the oceans using hydrophones, and try to find out when there is activity in a mid-ocean ridge," said Marie-Helene Cormier, assistant professor of geological sciences in MU¿s College of Arts and Science. "We might not know for a few days, and then it might take at least a week to get a ship to the site. If we want to study what's happening, it's very difficult to get accurate and timely information. Our goal is to put sensors in place so that we can record activity as it is happening. When we recover our sensors, we'll be able to study what was happening during those moments."

In mid February, Cormier and her colleagues, Spahr Webb and Roger Buck of Columbia University, will place sensors on the seafloor in multiple positions along the East Pacific Rise southwest of Mexico. The sensors will measure and record changes in the pressure of the water column above them. Cormier said the pressure of the water is expected to decrease during ridge activity because magma flows up between the two plates, creating new seafloor and raising the height of the sensors by a few inches. She and her team will collect data from the sensors while they are in place until they are removed from the ocean floor in 2009 or 2010. MU undergraduate students are expected to accompany Cormier on the research mission to learn more about geology and marine research.

"We expect there will be activity in this area while the sensors are there," Cormier said. "We'll measure, use computer models and compare data of the seascape from previous missions to this area to learn more about what's happening."

The data from this study could help scientists better understand what happens when tectonic plates move apart. This activity can cause underwater volcanic eruptions and earthquakes that result in the cycling of large quantities of seawater through the ocean floor, creating a nutrient-rich environment for bacteria and microorganisms. Cormier said the new magma and heat that come from below the earth's surface attract organisms to the new nutrient-rich, warm waters that are expelled from the seafloor.

"We want to understand more about what's happening under the oceans," Cormier said. "We can look at maps of Earth and see many details about the landforms above sea level, but we don't know nearly as much about what's under the ocean. Seventy percent of our land is under the ocean, so it's important to map out what landforms there are and understand what's happening there."

This research is supported by a National Science Foundation (NSF) grant. Through its "Research Experience for Undergraduates" initiative, the NSF also has approved some funds to assist the undergraduate students in their participation in the expedition.

Katherine Kostiuk | EurekAlert!
Further information:
http://www.oceanexplorer.noaa.gov
http:// www.ridge2000.org
http://www.missouri.edu

More articles from Earth Sciences:

nachricht Turning the Climate Tide by 2020
29.06.2017 | Potsdam-Institut für Klimafolgenforschung

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>