Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Researcher to Study Volcanism with Under-Ocean Sensors

07.02.2007
By recording activity where it happens under water, sensors will capture rare data

Earthquakes and volcanic activity occur when the tectonic plates that make up Earth's surface move apart or converge. While this activity is relatively easy to observe on land, it's more difficult to observe under the ocean, where most of it occurs. A University of Missouri-Columbia researcher will soon undertake a study to learn more about this process by placing sensors on a mid-ocean ridge called the East Pacific Rise.

"Right now, we can only listen from land using seismometers, or in the oceans using hydrophones, and try to find out when there is activity in a mid-ocean ridge," said Marie-Helene Cormier, assistant professor of geological sciences in MU¿s College of Arts and Science. "We might not know for a few days, and then it might take at least a week to get a ship to the site. If we want to study what's happening, it's very difficult to get accurate and timely information. Our goal is to put sensors in place so that we can record activity as it is happening. When we recover our sensors, we'll be able to study what was happening during those moments."

In mid February, Cormier and her colleagues, Spahr Webb and Roger Buck of Columbia University, will place sensors on the seafloor in multiple positions along the East Pacific Rise southwest of Mexico. The sensors will measure and record changes in the pressure of the water column above them. Cormier said the pressure of the water is expected to decrease during ridge activity because magma flows up between the two plates, creating new seafloor and raising the height of the sensors by a few inches. She and her team will collect data from the sensors while they are in place until they are removed from the ocean floor in 2009 or 2010. MU undergraduate students are expected to accompany Cormier on the research mission to learn more about geology and marine research.

"We expect there will be activity in this area while the sensors are there," Cormier said. "We'll measure, use computer models and compare data of the seascape from previous missions to this area to learn more about what's happening."

The data from this study could help scientists better understand what happens when tectonic plates move apart. This activity can cause underwater volcanic eruptions and earthquakes that result in the cycling of large quantities of seawater through the ocean floor, creating a nutrient-rich environment for bacteria and microorganisms. Cormier said the new magma and heat that come from below the earth's surface attract organisms to the new nutrient-rich, warm waters that are expelled from the seafloor.

"We want to understand more about what's happening under the oceans," Cormier said. "We can look at maps of Earth and see many details about the landforms above sea level, but we don't know nearly as much about what's under the ocean. Seventy percent of our land is under the ocean, so it's important to map out what landforms there are and understand what's happening there."

This research is supported by a National Science Foundation (NSF) grant. Through its "Research Experience for Undergraduates" initiative, the NSF also has approved some funds to assist the undergraduate students in their participation in the expedition.

Katherine Kostiuk | EurekAlert!
Further information:
http://www.oceanexplorer.noaa.gov
http:// www.ridge2000.org
http://www.missouri.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>