Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global climate: stratospheric hints

06.02.2007
Over the course of the last decade, under European projects the high-altitude aircraft M-55 “Geophysica”, reequipped to become a flying laboratory, has gathered an enormous volume of information.

It has studied the stratosphere of the Arctic and the Antarctic, it rose into the stratosphere over South America, Australia and soared over the Indian Ocean. As a result, the scientists, who are staff at the Central Upper-Air Observatory, have obtained a unique mass of data on the composition of the atmosphere at different altitudes. Analyzing these data, it is possible in the end to significantly raise the reliability of model calculations of both the current and future climates of Earth. The scientists are helped in their work by the International Science and Technology Centre.

Devices operating in automatic mode on board the aircraft enable data to be obtained on the composition of the stratosphere in different regions of the globe. Among them there are two devices, designed and built at the Central Upper-Air Observatory. One of them helps to determine the concentration of water vapours, even at a temperature of minus 90 degrees, when its content in the air is determined in millionths of shares of mass. The other helps to capture incredibly small concentrations of ozone, using a special, high-sensitive chemical reaction.

Project Manager Vladimir Yushkov, a Candidate of Physics and Mathematics agreed to explain why this information is necessary. “Global climate is that very instance where, without the present we can learn nothing at all about the future. And what is the “present” from the point of view of climate science? It is primarily precise knowledge of the condition of the environment. The more precise and voluminous the information on the condition of the atmosphere and the ocean, on the mechanisms of the formation of their temperature and dynamic regime and on solar activity, the more reliable the model calculations will be of future climatic changes”.

Unfortunately, it is rather difficult to capture climate change in accordance with data from observations conducted on the Earth’s surface. However, there are altitudes in the Earth’s atmosphere where even slight changes in the temperature of the Earth’s surface can bring about considerable temperature responses that can be measured to a fair degree of reliability. These are the stratospheric altitudes. But it is not enough to just know the temperatures of different layers of the stratosphere. One also has to know the composition of the stratospheric gases that influence the temperature regime. Primarily these are natural greenhouse gases, ozone and water vapour, the content of which is subjected to natural and anthropogenic changes. It is their concentration that was measured by the devices on board the high-altitude aircraft M-55 “Geophysica”.

However, it is not enough to have simply obtained these data. You also have to analyze them as it represents considerable interest for the study of exchange processes between the troposphere and the stratosphere, for identifying the mechanism of the chemical transfer of chemically active pollution to the ozone layer that reacts sensitively to them. The project of the Central Upper-Air Observatory, “The study of stratosphere-troposphere exchange” is devoted namely to this problem.

This problem really is interesting as, put very simply, in the troposphere, that is at altitudes of up to about 12km above the surface of the Earth, the temperature falls with a rise in altitude; the higher you go, the colder it becomes. And further still from the Earth, in the Stratosphere, everything is the reverse: the temperature rises the higher you go. The responsible party for this is the so-called ozone layer, the thickness of which depends on many things, including anthropogenic factors, of which one of the most important are chlorine- and bromide-containing compounds, the particularly woeful, well-known freons and certain other coolants. But how do they enter the altitude of the stratosphere from the surface, if we know that the troposphere and the stratosphere barely mix and exchange of chemical compounds between them is difficult?

The survey work of the Central Upper-Air Observatory will help to find an answer to this question. On the basis of data on the concentration of water vapours and ozone at different altitudes of the stratosphere over different sectors of the globe (in the Tropics and the polar latitudes), the researchers are developing models with which it will be possible, figuratively speaking, to “find the flow”. In other words, receiving new data on the mechanism of the distribution of greenhouse gases, their vertical and horizontal transfer. The scientists are confident that this research will significantly improve the model of the Earth’s climate and will produce predictions on its change that are more reliable.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>