Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA probes the sources of the world's tiny pollutants

31.01.2007
Pinpointing pollutant sources is an important part of the ongoing battle to improve air quality and to understand its impact on climate. Scientists using NASA data recently tracked the path and distribution of aerosols -- tiny particles suspended in the air -- to link their region of origin and source type with their tendencies to warm or cool the atmosphere.

By altering the amount of solar energy that reaches the Earth's surface, aerosols influence both regional and global climate, but their impact is difficult to quantify because most only stay airborne for about a week, while greenhouse gases can persist in the atmosphere for decades. In a study published Jan. 24 in the American Geophysical Union's Journal of Geophysical Research-Atmospheres, researchers investigated the sources of aerosols and how different types of aerosols influence climate.

"This study offers details on the aerosol source regions and emission source types that policy makers could target to most effectively combat climate change," said Dorothy Koch, lead author and atmospheric scientist at Columbia University and NASA's Goddard Institute for Space Studies (GISS), New York.

Using a GISS computer model that includes a variety of data gathered by NASA and other U.S. satellites, the researchers simulated realistic aerosol concentrations of important aerosol types in the atmosphere and studied the amount of light and heat they absorb and reflect over several regions around the globe.

Each area has a unique mix of natural and pollutant aerosol sources that produces different types of aerosols and causes complex climate effects. The industry and power sectors are particularly important in North America and Europe and produce large amounts of sulfur dioxide, while Asia has higher emissions from residential sources, which produce relatively more carbon-containing aerosols.

"Computer model simulations showed that black carbon in the Arctic, a potentially important driver in climate change, derives its largest portion from Southeast Asian residential sources," said Koch. "According to current model estimates, the residential sector appears to have a substantial potential to cause climate warming and therefore, could potentially be targeted to counter the effects of global warming."

Black carbon, commonly called soot, is generated from motor vehicles and industrial pollution, in addition to outdoor fires and household burning of coal and bio-fuels. Soot is produced by incomplete combustion, especially of diesel fuels, coal and wood. Residential soot emissions are largest in areas where cooking and heating are done with wood, field residue, animal dung and coal.

Black carbon absorbs sunlight, warming the atmosphere just as dark pavement absorbs more sunlight and becomes hotter than light pavement. It has a large influence on global climate because winds transport approximately half of the black carbon aerosols produced in important aerosol source regions like Asia and South Africa to other parts of the world. When lofted above precipitating clouds, these aerosols can remain airborne for relatively longer periods. Some of these aerosols are carried to polar regions where they settle on the surface of ice or snow and absorb sunlight and boost melting.

Most particles, especially sulfates produced from the sulfur dioxide emissions of factories and power plants, are light-colored and tend to cool the atmosphere by reflecting sunlight or making clouds more reflective. Computer model simulations suggest this effect is especially heightened over parts of the Northern Hemisphere, including the central United States. The study found, however, that sulfur dioxide emissions in Southeast Asia and Europe have a smaller impact on climate because atmospheric conditions in those areas are not as efficient at turning the emissions into sulfate particles.

The study also showed large amounts of aerosols containing organic carbon -- which also tend to cool the atmosphere and partially offset the warming from greenhouse gas emissions -- are produced by biomass (vegetation) burning. Most of the world’s biomass burning emissions appear to come from Africa and secondarily, from South America. However, precipitation removes a greater proportion of biomass-burning aerosols from the atmosphere over Africa than over South America. As a result, more than one-half of the biomass-burning aerosols in the Southern Hemisphere can be traced back to South America.

"This research is only the first step in considering the impacts of aerosols from different sectors on climate," said Koch. "Aerosols have other effects, like altering cloud characteristics that influence precipitation and climate." In a related paper accepted for publication in Geophysical Research Letters, the researchers examine how anticipated advances in technology will impact the amount of aerosols emitted from each sector in the future, so that specific regions and types of aerosols can be targeted.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>