Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA probes the sources of the world's tiny pollutants

31.01.2007
Pinpointing pollutant sources is an important part of the ongoing battle to improve air quality and to understand its impact on climate. Scientists using NASA data recently tracked the path and distribution of aerosols -- tiny particles suspended in the air -- to link their region of origin and source type with their tendencies to warm or cool the atmosphere.

By altering the amount of solar energy that reaches the Earth's surface, aerosols influence both regional and global climate, but their impact is difficult to quantify because most only stay airborne for about a week, while greenhouse gases can persist in the atmosphere for decades. In a study published Jan. 24 in the American Geophysical Union's Journal of Geophysical Research-Atmospheres, researchers investigated the sources of aerosols and how different types of aerosols influence climate.

"This study offers details on the aerosol source regions and emission source types that policy makers could target to most effectively combat climate change," said Dorothy Koch, lead author and atmospheric scientist at Columbia University and NASA's Goddard Institute for Space Studies (GISS), New York.

Using a GISS computer model that includes a variety of data gathered by NASA and other U.S. satellites, the researchers simulated realistic aerosol concentrations of important aerosol types in the atmosphere and studied the amount of light and heat they absorb and reflect over several regions around the globe.

Each area has a unique mix of natural and pollutant aerosol sources that produces different types of aerosols and causes complex climate effects. The industry and power sectors are particularly important in North America and Europe and produce large amounts of sulfur dioxide, while Asia has higher emissions from residential sources, which produce relatively more carbon-containing aerosols.

"Computer model simulations showed that black carbon in the Arctic, a potentially important driver in climate change, derives its largest portion from Southeast Asian residential sources," said Koch. "According to current model estimates, the residential sector appears to have a substantial potential to cause climate warming and therefore, could potentially be targeted to counter the effects of global warming."

Black carbon, commonly called soot, is generated from motor vehicles and industrial pollution, in addition to outdoor fires and household burning of coal and bio-fuels. Soot is produced by incomplete combustion, especially of diesel fuels, coal and wood. Residential soot emissions are largest in areas where cooking and heating are done with wood, field residue, animal dung and coal.

Black carbon absorbs sunlight, warming the atmosphere just as dark pavement absorbs more sunlight and becomes hotter than light pavement. It has a large influence on global climate because winds transport approximately half of the black carbon aerosols produced in important aerosol source regions like Asia and South Africa to other parts of the world. When lofted above precipitating clouds, these aerosols can remain airborne for relatively longer periods. Some of these aerosols are carried to polar regions where they settle on the surface of ice or snow and absorb sunlight and boost melting.

Most particles, especially sulfates produced from the sulfur dioxide emissions of factories and power plants, are light-colored and tend to cool the atmosphere by reflecting sunlight or making clouds more reflective. Computer model simulations suggest this effect is especially heightened over parts of the Northern Hemisphere, including the central United States. The study found, however, that sulfur dioxide emissions in Southeast Asia and Europe have a smaller impact on climate because atmospheric conditions in those areas are not as efficient at turning the emissions into sulfate particles.

The study also showed large amounts of aerosols containing organic carbon -- which also tend to cool the atmosphere and partially offset the warming from greenhouse gas emissions -- are produced by biomass (vegetation) burning. Most of the world’s biomass burning emissions appear to come from Africa and secondarily, from South America. However, precipitation removes a greater proportion of biomass-burning aerosols from the atmosphere over Africa than over South America. As a result, more than one-half of the biomass-burning aerosols in the Southern Hemisphere can be traced back to South America.

"This research is only the first step in considering the impacts of aerosols from different sectors on climate," said Koch. "Aerosols have other effects, like altering cloud characteristics that influence precipitation and climate." In a related paper accepted for publication in Geophysical Research Letters, the researchers examine how anticipated advances in technology will impact the amount of aerosols emitted from each sector in the future, so that specific regions and types of aerosols can be targeted.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>