Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Reveals Limitations of Seismic Data for Mapping Rock Units in Young Oceanic Crust

Researchers report that an approach used for years to understand the structure of Earth's oceanic crust is flawed and geoscientists will have reconsider the correspondence between seismic data and rock units when mapping formations of young oceanic crust.

The new finding alters the view of how new crust is formed at mid-ocean ridges, how heat and chemicals flow through oceanic crust and how life can exist in the hot, inhospitable environment deep below the seafloor.

Scientists Gail Christeson and Kirk McIntosh from the Institute for Geophysics at The University of Texas at Austin’s Jackson School of Geosciences, and Jeffrey Karson from Syracuse University, publish their findings in this week's edition of Nature. Their research reveals that seismic data, widely used by geoscientists to create a picture of the geology below the seafloor, cannot reliably map the boundaries between rock units in young oceanic crust. Despite this limitation, seismic data may hold keys to understanding how fluids reside and circulate through the crust and the limits of the subsurface biosphere.

Oceanic crust makes up two-thirds of the Earth’s surface. It is made of igneous rock and formed at mid-ocean ridges, the largest volcanic system on our planet, from melting in the mantle. Eventually, oceanic crust is consumed at major earthquake-generating deep-sea trenches.

The oceanic crust has been studied by geophysicists and geologists for many years—geophysicists using remote sensing techniques such as seismic exploration, and geologists with samples and direct observations. In part because of their different perspectives and techniques, geologists and geophysicists have been at odds over the basic definitions of oceanic crustal structure.

Geologists typically describe an upper layer of basaltic lavas, a middle layer of basaltic intrusive rock units, known as dykes, and a lower layer of gabbroic rocks. The top layer of lavas formed when magma, or molten rock, erupted onto the seafloor. The middle layer of dykes were created as molten rock from the underlying magma chamber intruded into incrementally opening cracks at a spreading center, with younger dykes cross-cutting older dykes, eventually creating a massive collection of rock units referred to as a sheeted dyke complex. The incremental in-filling of cracks above a magma chamber is the essence of seafloor spreading.

Geophysicists divide oceanic crust (beneath any sedimentary material) into two basic layers, layer 2 and layer 3. Layer 2 is typically subdivided further into layers 2A and 2B. Layer 2A, the subject of the report in Nature, is a commonly imaged horizon in the seismic data, known as the 2A reflector, which numerous studies have mapped over extensive regions of young oceanic crust.

The problem with trying to reconcile the two models of the structure of oceanic crust is that while seismic methods can be used to probe deeply into the crust and gather data over unlimited distances, the interpretation of results is usually by inference. Geologic methods, on the other hand, provide direct evidence and observation, but are limited by the few outcrops and drill holes where samples from the crust can be collected, and by the limitation of observing outcrop data with submersibles.

“Our work addressed the extent to which seismic boundaries within the crust correlate with rock units at the Hess Deep rift and the Blanco transform fault,” explained co-investigator McIntosh, “where nature offers a rare glimpse of what lies beneath the seafloor and the Earth’s crust-making processes.”

“Places like Hess Deep rift and the Blanco transform provide windows into the internal structure of the oceanic crust in cliffs that are on the scale of the walls of the Grand Canyon— more than a mile high,” said Karson, co-investigator on the project and a professor in the Department of Earth Sciences at Syracuse University.

Because of the exposures at Hess Deep and the Blanco transform fault, the researchers were able to compare the seismic structure of upper oceanic crust with the known geology of the crust exposed and mapped by previous submersible dives.

“Prior to our study, there were no links between the geologic and seismological structure of oceanic crust except at a few deep drill holes,” said Christeson.

“Many researchers interpret seismic reflector 2A as the geologic boundary between the upper layer of lavas and the underlying sheeted dykes,” said Christeson. “Our work shows that we can’t reliably use seismic methods to map the boundary between lavas and dykes in young oceanic crust.”

“However, the seismic data maps porosity,” said Karson. “Microbes live in this pore space—a very exciting frontier of geology/biology.”

The results also undermine an alternative hypothesis that the 2A reflector is associated with a chemical alteration boundary zone within the upper lava unit, raising the question: What are these seismic differences mapping?

“We propose that the 2A reflector corresponds to a chemical alteration front associated with a feature—possible a crack where minerals can precipitate as a result of increased temperature and decreased porosity,” said Christeson. “Such a hydrothermal alteration zone can occur either within the lava section or near the top of the sheeted dyke complex of oceanic crust.”

The work carried out at Hess Deep and the Blanco transform fault expands geologists and geophysicists’ understanding of the relationship between the seismic boundaries and the rock units of oceanic crust and provides a new avenue of research to learn more about the porosity structure of the upper oceanic crust.

The research was supported by the National Science Foundation.

The article, titled “Inconsistent correlation of seismic layer 2a and lava layer thickness in oceanic crust” is available online (by subscription) at:

J.B. Bird | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>