Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Reveals Limitations of Seismic Data for Mapping Rock Units in Young Oceanic Crust

31.01.2007
Researchers report that an approach used for years to understand the structure of Earth's oceanic crust is flawed and geoscientists will have reconsider the correspondence between seismic data and rock units when mapping formations of young oceanic crust.

The new finding alters the view of how new crust is formed at mid-ocean ridges, how heat and chemicals flow through oceanic crust and how life can exist in the hot, inhospitable environment deep below the seafloor.

Scientists Gail Christeson and Kirk McIntosh from the Institute for Geophysics at The University of Texas at Austin’s Jackson School of Geosciences, and Jeffrey Karson from Syracuse University, publish their findings in this week's edition of Nature. Their research reveals that seismic data, widely used by geoscientists to create a picture of the geology below the seafloor, cannot reliably map the boundaries between rock units in young oceanic crust. Despite this limitation, seismic data may hold keys to understanding how fluids reside and circulate through the crust and the limits of the subsurface biosphere.

Oceanic crust makes up two-thirds of the Earth’s surface. It is made of igneous rock and formed at mid-ocean ridges, the largest volcanic system on our planet, from melting in the mantle. Eventually, oceanic crust is consumed at major earthquake-generating deep-sea trenches.

The oceanic crust has been studied by geophysicists and geologists for many years—geophysicists using remote sensing techniques such as seismic exploration, and geologists with samples and direct observations. In part because of their different perspectives and techniques, geologists and geophysicists have been at odds over the basic definitions of oceanic crustal structure.

Geologists typically describe an upper layer of basaltic lavas, a middle layer of basaltic intrusive rock units, known as dykes, and a lower layer of gabbroic rocks. The top layer of lavas formed when magma, or molten rock, erupted onto the seafloor. The middle layer of dykes were created as molten rock from the underlying magma chamber intruded into incrementally opening cracks at a spreading center, with younger dykes cross-cutting older dykes, eventually creating a massive collection of rock units referred to as a sheeted dyke complex. The incremental in-filling of cracks above a magma chamber is the essence of seafloor spreading.

Geophysicists divide oceanic crust (beneath any sedimentary material) into two basic layers, layer 2 and layer 3. Layer 2 is typically subdivided further into layers 2A and 2B. Layer 2A, the subject of the report in Nature, is a commonly imaged horizon in the seismic data, known as the 2A reflector, which numerous studies have mapped over extensive regions of young oceanic crust.

The problem with trying to reconcile the two models of the structure of oceanic crust is that while seismic methods can be used to probe deeply into the crust and gather data over unlimited distances, the interpretation of results is usually by inference. Geologic methods, on the other hand, provide direct evidence and observation, but are limited by the few outcrops and drill holes where samples from the crust can be collected, and by the limitation of observing outcrop data with submersibles.

“Our work addressed the extent to which seismic boundaries within the crust correlate with rock units at the Hess Deep rift and the Blanco transform fault,” explained co-investigator McIntosh, “where nature offers a rare glimpse of what lies beneath the seafloor and the Earth’s crust-making processes.”

“Places like Hess Deep rift and the Blanco transform provide windows into the internal structure of the oceanic crust in cliffs that are on the scale of the walls of the Grand Canyon— more than a mile high,” said Karson, co-investigator on the project and a professor in the Department of Earth Sciences at Syracuse University.

Because of the exposures at Hess Deep and the Blanco transform fault, the researchers were able to compare the seismic structure of upper oceanic crust with the known geology of the crust exposed and mapped by previous submersible dives.

“Prior to our study, there were no links between the geologic and seismological structure of oceanic crust except at a few deep drill holes,” said Christeson.

“Many researchers interpret seismic reflector 2A as the geologic boundary between the upper layer of lavas and the underlying sheeted dykes,” said Christeson. “Our work shows that we can’t reliably use seismic methods to map the boundary between lavas and dykes in young oceanic crust.”

“However, the seismic data maps porosity,” said Karson. “Microbes live in this pore space—a very exciting frontier of geology/biology.”

The results also undermine an alternative hypothesis that the 2A reflector is associated with a chemical alteration boundary zone within the upper lava unit, raising the question: What are these seismic differences mapping?

“We propose that the 2A reflector corresponds to a chemical alteration front associated with a feature—possible a crack where minerals can precipitate as a result of increased temperature and decreased porosity,” said Christeson. “Such a hydrothermal alteration zone can occur either within the lava section or near the top of the sheeted dyke complex of oceanic crust.”

The work carried out at Hess Deep and the Blanco transform fault expands geologists and geophysicists’ understanding of the relationship between the seismic boundaries and the rock units of oceanic crust and provides a new avenue of research to learn more about the porosity structure of the upper oceanic crust.

The research was supported by the National Science Foundation.

The article, titled “Inconsistent correlation of seismic layer 2a and lava layer thickness in oceanic crust” is available online (by subscription) at:

http://www.nature.com/nature/journal/v445/n7126/full/nature05517.html

J.B. Bird | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>