Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne dust causes ripple effect on climate far away

30.01.2007
When a small pebble drops into a serene pool of water, it causes a ripple in the water in every direction, even disturbing distant still waters.

NASA researchers have found a similar process at work in the atmosphere: tiny particles in the air called aerosols can cause a rippling effect on the climate thousands of miles away from their source region.

The researchers found that dust particles from the desert regions in northern Africa can produce climate changes as far away as the northern Pacific Ocean. Large quantities of dust from North Africa are injected into the atmosphere by dust storms and rising air. Airborne dust absorbs sunlight and heats the atmosphere. The heating effect ripples through the atmosphere, affecting surface and air temperatures as the dust travels.

"These highs and lows in air temperatures caused by radiation-absorbing aerosols can lead to 'teleconnection’, which refers to changes in weather and climate in one place caused by events happening far away, often more than half way around the globe," said William Lau, Chief of the Laboratory for Atmospheres at NASA's Goddard Space Flight Center, Greenbelt, Md., and author of a study published last fall in the American Meteorological Society's Journal of Climate. "North African dust can be lifted high into the atmosphere by storms and then transported across the Atlantic and Caribbean, where its effect can be far-reaching."

From a climate point of view, aerosols can block solar radiation (incoming heat and light from the sun) from hitting the Earth's land surface. When sunlight is blocked, it can cause the Earth's surface to cool, and/or the aerosols can absorb solar radiation and cause the atmosphere in the vicinity of the airborne dust to get warmer.

According to Lau, researchers thought for years that heat changes in the atmosphere from aerosols only caused local changes in temperatures. However, "we now know they may cause more than local changes to climate," he said. Lau's computer model indicates that the heat changes caused by aerosols affect the heat balance in the air over North Africa. That change in heat creates large waves in the atmosphere that ripple as far away as Eurasia and the North Pacific.

Researchers have created complex numerical models to simulate the "still waters" of the atmosphere during North African spring – a season when climate conditions are relatively calm with light winds and light rain.

Lau's team carried out a numerical model experiment that included aerosol forcing, and then another one with identical initial conditions and lower boundary conditions, except that the aerosol forcing is removed. By comparing the weather patterns in the two experiments, they can deduce the effect of aerosol forcing. They observed the aerosols made an impact far away from their source region. In setting up their experiment, the researchers chose the northern Sahara Desert in springtime, when the weather conditions are relatively calm, allowing aerosols, like dust, to build up more in air.

An "atmospheric teleconnection" happens when unusual patterns of air pressure and air circulation happen in one place, and the energy is dispersed over large distances around the globe to other places. An atmospheric teleconnection can lead to changes in sea level pressure and temperature around the world. This study saw changes from North Africa through Eurasia to the North Pacific.

Most interesting, Lau's team found that North African-dust teleconnection led to strong cooling over the Caspian Sea (a land-locked body of water between Russia and Europe) and warming over central and northeastern Asia, where man-made aerosol concentrations are low.

"Elevated aerosols in large quantities such as dust from North Africa, or biomass burning may have global impacts," said Lau. "We expect to observe more and more real-world examples of this teleconnection phenomenon with the high volume of aerosols generated by nature and human activities around the world."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2006/particle_ripple.html

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>