Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne dust causes ripple effect on climate far away

30.01.2007
When a small pebble drops into a serene pool of water, it causes a ripple in the water in every direction, even disturbing distant still waters.

NASA researchers have found a similar process at work in the atmosphere: tiny particles in the air called aerosols can cause a rippling effect on the climate thousands of miles away from their source region.

The researchers found that dust particles from the desert regions in northern Africa can produce climate changes as far away as the northern Pacific Ocean. Large quantities of dust from North Africa are injected into the atmosphere by dust storms and rising air. Airborne dust absorbs sunlight and heats the atmosphere. The heating effect ripples through the atmosphere, affecting surface and air temperatures as the dust travels.

"These highs and lows in air temperatures caused by radiation-absorbing aerosols can lead to 'teleconnection’, which refers to changes in weather and climate in one place caused by events happening far away, often more than half way around the globe," said William Lau, Chief of the Laboratory for Atmospheres at NASA's Goddard Space Flight Center, Greenbelt, Md., and author of a study published last fall in the American Meteorological Society's Journal of Climate. "North African dust can be lifted high into the atmosphere by storms and then transported across the Atlantic and Caribbean, where its effect can be far-reaching."

From a climate point of view, aerosols can block solar radiation (incoming heat and light from the sun) from hitting the Earth's land surface. When sunlight is blocked, it can cause the Earth's surface to cool, and/or the aerosols can absorb solar radiation and cause the atmosphere in the vicinity of the airborne dust to get warmer.

According to Lau, researchers thought for years that heat changes in the atmosphere from aerosols only caused local changes in temperatures. However, "we now know they may cause more than local changes to climate," he said. Lau's computer model indicates that the heat changes caused by aerosols affect the heat balance in the air over North Africa. That change in heat creates large waves in the atmosphere that ripple as far away as Eurasia and the North Pacific.

Researchers have created complex numerical models to simulate the "still waters" of the atmosphere during North African spring – a season when climate conditions are relatively calm with light winds and light rain.

Lau's team carried out a numerical model experiment that included aerosol forcing, and then another one with identical initial conditions and lower boundary conditions, except that the aerosol forcing is removed. By comparing the weather patterns in the two experiments, they can deduce the effect of aerosol forcing. They observed the aerosols made an impact far away from their source region. In setting up their experiment, the researchers chose the northern Sahara Desert in springtime, when the weather conditions are relatively calm, allowing aerosols, like dust, to build up more in air.

An "atmospheric teleconnection" happens when unusual patterns of air pressure and air circulation happen in one place, and the energy is dispersed over large distances around the globe to other places. An atmospheric teleconnection can lead to changes in sea level pressure and temperature around the world. This study saw changes from North Africa through Eurasia to the North Pacific.

Most interesting, Lau's team found that North African-dust teleconnection led to strong cooling over the Caspian Sea (a land-locked body of water between Russia and Europe) and warming over central and northeastern Asia, where man-made aerosol concentrations are low.

"Elevated aerosols in large quantities such as dust from North Africa, or biomass burning may have global impacts," said Lau. "We expect to observe more and more real-world examples of this teleconnection phenomenon with the high volume of aerosols generated by nature and human activities around the world."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2006/particle_ripple.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>