Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth-shattering proof of continents on the move

30.01.2007
AFRICA is being torn apart. And as Ethiopia's rift valley grows slowly wider, an international team of scientists is taking a unique opportunity to plot the progress of continents on the move.

The 28-strong team is led by University of Leeds geophysicist Dr Tim Wright, who has secured a £2.5 million grant from the Natural Environment Research Council (NERC) to study the seismic events taking place in the remote Afar desert of Northern Ethiopia.

It's here that two mighty shelves of continental crust, the African and Arabian plates, meet – and are tearing the landscape apart.

For most of the time, this happens at around the same speed that human fingernails grow – about 16mm a year. But the gradual build-up of underground pressure can lead to occasional bursts of cataclysmic activity.

The most dramatic event came in September 2005, when hundreds of deep crevices appeared within a few weeks, and parts of the ground shifted eight metres, almost overnight. More than two billion cubic metres of rising molten rock – magma – had seeped into a crack between the African and Arabian tectonic plates, forcing them further apart.

And it has given Dr Wright's team a unique opportunity to witness plate tectonics – the science of how continents are formed and move – at first hand. "Much of the activity between the continental shelves takes place deep underwater at the mid-ocean ridges. Ethiopia is the only place on the planet where we can see a continent splitting apart on dry land."

Dr Wright and his colleagues will use satellite radar imaging to measure how the ground deforms. "In its simplest form, you are taking two snapshots of the same place, separated by a period of time, to see how far they have moved apart."

His team, which includes experts from Oxford, Cambridge, Bristol and Edinburgh universities, as well as international researchers from the US, New Zealand, France and Ethiopia, will also use GPS, seismometers, and other geophysical and geochemical techniques to determine the properties of rock and magma below the surface, and to monitor the crust's movement. They will use the data to create a 3D computer model of how magma moves through the Earth's crust to make and break continents.

As the sides of the Ethiopian rift move apart, the gap between them is being plugged with molten rock, which then cools to form new land. And in around one million year's time the Red Sea could come flooding into the sinking region, re-shaping the map of Africa forever.

"It's very exciting because we're witnessing the birth of a new ocean," said Dr Wright. "In geological terms, a million years is the blink of an eye. We don't precisely know what is going to happen, but we believe that it may turn parts of Northern Ethiopia and Eritrea into an island, before a much larger land mass – the horn of Africa – breaks off from the continent."

Much of the team's work will be on the ground in the Afar region of Ethiopia, also known as the Danakil depression. It's a barren, inhospitable, but beautiful part of the world. "Afdera, one of the towns in the region, is the hottest continuously-occupied place on the planet," said Dr Wright. "Temperatures can approach 60 degrees centigrade during the summer months, so we tend to go in the winter when it's that bit cooler – although it still gets to 45C."

Scientists from the University of Addis Ababa who are working on the project will undertake collaborative research visits to the UK. The research will establish a firm link between the two universities, with Leeds supporting two Ethiopian students on a PhD programme which will include a year in the UK.

"We will be training Ethiopian scientists in the use of satellite and radar technology – skills they will be able to continue to use long after this programme has ended."

Simon Jenkins | alfa
Further information:
http://www.leeds.ac.uk

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>