Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe drumlin beneath ice sheet

24.01.2007
Scientists have discovered a warehouse-sized drumlin – a mound of sediment and rock – actively forming and growing under the ice sheet in Antarctica. Its discovery, and the rate at which it was formed, sheds new light on ice-sheet behaviour. This could have implications for predicting how ice sheets contribute to sea-level rise. The results are published this week in the journal Geology.

Drumlins are well known features of landscape scoured by past ice sheets and can be seen in Scotland and Northern England where they were formed during the last ice age. They form underneath the ice as it scrapes up soil and rock, and they slow down the rate at which the ice can flow.

Scientists from British Antarctic Survey (BAS), Swansea University and NASA's Jet Propulsion Laboratory Pasadena used a new technique of time-lapse seismic surveys to find the drumlin, and how it formed over time.

Lead author Dr Andy Smith of BAS says, "This is the first time anyone has observed a drumlin actually forming under the ice. These results will help us interpret the way ice sheets behaved in the past, and crucially, will help predict how they might change in the future".

To the team's surprise the drumlin grew ten times faster than they had ever expected, giving a new and important insight into the drag on the underside of the ice and hence how fast ice sheets are able to flow. The study took place on the Rutford Ice Stream – a 2-km thick, fast flowing ice stream draining part of the West Antarctic ice sheet.

The team used seismic reflection data gathered three times over the last 13 years to map the changes beneath the ice.

Second author Professor Tavi Murray of Swansea University's School of the Environment and Society says, "The new study was recently described at a conference as 'hunting drumlins in the wild'. The analogy with wildlife is good. We learn a lot more from seeing an animal born and growing up, than just dissecting an ancient body. The same is true of drumlins. By observing the birth and growth of this drumlin, we can see that the landscape beneath an ice sheet is changing at a rate faster than previously thought".

Athena Dinar | EurekAlert!
Further information:
http://www.jpl.nasa.gov
http://www.antarctica.ac.uk
http://www.swansea.ac.uk.

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>