Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe drumlin beneath ice sheet

24.01.2007
Scientists have discovered a warehouse-sized drumlin – a mound of sediment and rock – actively forming and growing under the ice sheet in Antarctica. Its discovery, and the rate at which it was formed, sheds new light on ice-sheet behaviour. This could have implications for predicting how ice sheets contribute to sea-level rise. The results are published this week in the journal Geology.

Drumlins are well known features of landscape scoured by past ice sheets and can be seen in Scotland and Northern England where they were formed during the last ice age. They form underneath the ice as it scrapes up soil and rock, and they slow down the rate at which the ice can flow.

Scientists from British Antarctic Survey (BAS), Swansea University and NASA's Jet Propulsion Laboratory Pasadena used a new technique of time-lapse seismic surveys to find the drumlin, and how it formed over time.

Lead author Dr Andy Smith of BAS says, "This is the first time anyone has observed a drumlin actually forming under the ice. These results will help us interpret the way ice sheets behaved in the past, and crucially, will help predict how they might change in the future".

To the team's surprise the drumlin grew ten times faster than they had ever expected, giving a new and important insight into the drag on the underside of the ice and hence how fast ice sheets are able to flow. The study took place on the Rutford Ice Stream – a 2-km thick, fast flowing ice stream draining part of the West Antarctic ice sheet.

The team used seismic reflection data gathered three times over the last 13 years to map the changes beneath the ice.

Second author Professor Tavi Murray of Swansea University's School of the Environment and Society says, "The new study was recently described at a conference as 'hunting drumlins in the wild'. The analogy with wildlife is good. We learn a lot more from seeing an animal born and growing up, than just dissecting an ancient body. The same is true of drumlins. By observing the birth and growth of this drumlin, we can see that the landscape beneath an ice sheet is changing at a rate faster than previously thought".

Athena Dinar | EurekAlert!
Further information:
http://www.jpl.nasa.gov
http://www.antarctica.ac.uk
http://www.swansea.ac.uk.

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>