Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists observe drumlin beneath ice sheet

Scientists have discovered a warehouse-sized drumlin – a mound of sediment and rock – actively forming and growing under the ice sheet in Antarctica. Its discovery, and the rate at which it was formed, sheds new light on ice-sheet behaviour. This could have implications for predicting how ice sheets contribute to sea-level rise. The results are published this week in the journal Geology.

Drumlins are well known features of landscape scoured by past ice sheets and can be seen in Scotland and Northern England where they were formed during the last ice age. They form underneath the ice as it scrapes up soil and rock, and they slow down the rate at which the ice can flow.

Scientists from British Antarctic Survey (BAS), Swansea University and NASA's Jet Propulsion Laboratory Pasadena used a new technique of time-lapse seismic surveys to find the drumlin, and how it formed over time.

Lead author Dr Andy Smith of BAS says, "This is the first time anyone has observed a drumlin actually forming under the ice. These results will help us interpret the way ice sheets behaved in the past, and crucially, will help predict how they might change in the future".

To the team's surprise the drumlin grew ten times faster than they had ever expected, giving a new and important insight into the drag on the underside of the ice and hence how fast ice sheets are able to flow. The study took place on the Rutford Ice Stream – a 2-km thick, fast flowing ice stream draining part of the West Antarctic ice sheet.

The team used seismic reflection data gathered three times over the last 13 years to map the changes beneath the ice.

Second author Professor Tavi Murray of Swansea University's School of the Environment and Society says, "The new study was recently described at a conference as 'hunting drumlins in the wild'. The analogy with wildlife is good. We learn a lot more from seeing an animal born and growing up, than just dissecting an ancient body. The same is true of drumlins. By observing the birth and growth of this drumlin, we can see that the landscape beneath an ice sheet is changing at a rate faster than previously thought".

Athena Dinar | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>