Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate and pollution: a week link?

15.02.2002


Atmospheric carbon dioxide is lower at the weekend.


Mauna Loa observatory: continuous atmospheric carbon dioxide measurements since the 1950s
© NOAA/CMDL



The climate-monitoring station on Mauna Loa volcano on Hawaii, 3,400 metres above sea level, could hardly be farther away from it all. Yet even here there is no escaping the weekly rhythm of modern life. The observatory records lower concentrations of carbon dioxide in the atmosphere at the weekend than during the week.

Because there is no known natural cause of such a seven-day cycle, Randall Cerveny of Arizona State University and Kevin Coakley of the National Institute of Standards and Technology in Boulder, Colorado, propose that these observations reflect the weekday bustle and weekend lull in Hawaii’s populated regions1.


Increased traffic on Hawaii’s islands, especially in the main city Hilo, is the most likely cause. Carbon dioxide is a greenhouse gas - it absorbs and retains solar heat in the Earth’s atmosphere. Vehicles, industry and agriculture produce the gas when they burn fossil fuels. It is the main component of exhaust fumes.

Could these weekly carbon dioxide cycles cause corresponding variations in climate? The researchers point out that some climate records already show signs of such effects. Global average temperatures and regional rainfall seem to depend to a small degree on the day of the week.

The daily grind

Established in the 1950s, the Mauna Loa weather-monitoring station now takes continuous measurements of atmospheric carbon dioxide levels to help understand how human activities are changing global climate.

The Mauna Loa records show a steady rise in atmospheric carbon dioxide levels over the past few decades, modulated by an annual rise and fall owing to seasonal changes in the natural sources and sinks of the gas (caused by differences in plant growth, for instance). Cyclical changes on shorter time scales are harder to spot in the records, because they are usually much weaker than the seasonal oscillations, and masked by random variations in the data.

Cerveny and Coakley spotted the weekly cycle by calculating the average carbon dioxide levels for each day of the week, after subtracting out changes owing to the seasonal cycle and the gradual yearly rise. They find that the measurements rise to a peak on Mondays and then decline steadily to a minimum on Saturdays.

Crucially, the researchers find no such cycle in carbon dioxide records from the Amundsen-Scott South Pole Station in Antarctica, which is far from any sources of pollution. The Antarctic measurements show the same yearly trend and seasonal cycle, but there is no significant difference between average daily values.

The researchers reason that by the time carbon dioxide pollution reaches Antarctica, such short-term variations have evened out. On Hawaii, in contrast, local pollution levels seem to register almost instantly at the Mauna Loa station.

References

  1. Cerveny, R. S. & Coakley, K. J. A weekly cycle in atmospheric carbon dioxide. Geophysical Research Letters, 29, 10.1029/2001GL013952 (2002).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020211/020211-10.html

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>