Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists analyze corn to map North American carbon dioxide

23.01.2007
Scientists have developed a novel way of mapping carbon dioxide levels in various parts of North America, by analyzing corn grown in those regions.

Diana Hsueh at the University of California, Irvine, and colleagues collected corn from nearly 70 locations in the United States and Canada. They found that the Ohio Valley and California had the most fossil-fuel-emitted carbon dioxide, while the Colorado region had the least.

This method of measuring carbon dioxide produced by burning fossil fuels, such as coal, oil, and natural gas, can help atmospheric scientists better understand where carbon dioxide, a greenhouse gas, is located and how it mixes and moves in the air. Plants, the researchers say, provide a cost-effective way to record average daytime conditions over several months, as they take in carbon dioxide gas during photosynthesis, and it becomes part of the plant tissue. Their report will be published 23 January in Geophysical Research Letters, a journal of the American Geophysical Union.

The scientists chose corn, because it is widely grown and, as an annual plant, all of its carbon is derived from a single growing season. They avoided pollution point sources, such as highways and power plants, to allow for mapping of regional patterns across various states and provinces. In the laboratory, they dried samples of corn leaves and husks and chemically converted them into graphite. They then analyzed the graphite in a mass spectrometer, which measured levels of radiocarbon, a rare isotope of carbon.

Carbon dioxide derived from fossil fuels contains no radiocarbon, so it is easily distinguishable from other sources. With measurements from the mass spectrometer, the scientists calculated overall levels of carbon dioxide produced by fossil fuels at the locations where the corn samples were collected.

The scientists had expected carbon dioxide from California and other western coastal states to drift eastward, but they found that the Rocky Mountains appeared to provide a barrier. Air in the Mountain West, including Colorado, Idaho, and New Mexico, had the lowest carbon dioxide, about 370 parts per million. Air in the Eastern United States, which includes Massachusetts, New Hampshire, and New York, contained an additional 2.7 parts per million of carbon dioxide from fossil fuel sources.

Air in Maryland, Ohio, Pennsylvania, and West Virginia had nearly twice as much additional carbon dioxide from fossil fuels, 4.3 parts per million.

"Many nations are facing increasing pressure to monitor and regulate the release of carbon dioxide from fossil fuel sources to limit greenhouse gas warming," said James Randerson, a co-author of the study. "This method can help determine how much fossil fuel carbon dioxide is coming from different regions."

"We have to better understand emission patterns and changes in the atmosphere in order to better regulate fossil fuels," said Susan Trumbore, another co-author of the study. "This is a direct way to measure the release of carbon dioxide emissions that are contributing to climate warming."

The research was funded by the National Science Foundation and NASA.

Peter Weiss | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>