Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAF geologist studies Chicxulub impact crater

22.01.2007
About 65 million years ago, a massive disruption led to worldwide extinction of dinosaurs. The impact of a giant asteroid created massive tsunamis and spewed forth a global cloud of carbon gases that altered Earth's atmosphere and blocked the light for weeks, possibly years.

In recent years, that impact event has been linked to a 112-mile-wide crater, dubbed Chicxulub, on the coast of Mexico's Yucatan Peninsula.

Since its discovery in the 1980s, the Chicxulub crater has left its own impact on sky-watchers and sci-fi fans worldwide, and impact events have been depicted in Hollywood films such as "Armageddon" and "Deep Impact," as well as countless artistic renditions.

Despite the spotlight on the theories surrounding the impact, Michael Whalen, associate professor of geology at University of Alaska Fairbanks, has managed to stay "out of the limelight, yet into the limestone" with his work sampling the core of the crater.

Due to the efforts of Buck Sharpton, UAF Vice Chancellor for Research, Whalen became part of an international effort to correlate seismic data with information obtained from a drill hole that reaches more than 1.2 miles deep, through the impact layer and beyond.

Interestingly enough, unlike other more noticeable craters, the Chicxulub crater spent 55 million years in virtual obscurity, due to the fast infilling that masked its presence. Speedy recovery, which by geologists' standards amounts to about 10 million years, preserved the crater by mantling it with sediment, attracting geologists like Whalen, who studies the effects of extinction events on carbonate layers (also known as limestone) and the organisms that make up those layers.

On Jan. 20, Whalen will be traveling with a team to the Chicxulub site for a week to obtain more core samples in order to get a better understanding of how the crater filled in and how the earth itself recovered from the massive impact. He's also part of an ongoing collaboration that is trying to secure funding to drill two more holes in the crater, one off shore and one through the peak ring.

Melissa Hart | EurekAlert!
Further information:
http://www.gi.alaska.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>