Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrops go ballistic in research on soil erosion

22.01.2007
Raindrops can wreak havoc on Earth. They just do it on a microscopic scale. At that scale, raindrops hitting bare ground have nearly the force of a hammer hitting a mound of dirt.

What happens when the water hits the soil is the micro-ballistic effect of displaced soil splattering around in all directions. In arid regions, such as central Arizona, this is an important process that shapes the landscape.

While it sounds elemental, it has only been recently that researchers, including one from Arizona State University, have studied these effects up close and in freeze frame.

The research team is led by Mark Schmeeckle, an assistant professor in ASU's School of Geographical Sciences and David Furbish, professor of earth and environmental studies at Vanderbilt Univ., Nashville, Tenn. They focused on the effect of raindrops hitting bare soil in a series of controlled experiments that included high-speed photography to capture the soil splattering process and its aftermath.

What they found were some violent confrontations, as water hit bare soil causing splatter effects of the soil. They also found that momentum plays a key role in slope erosion and gravity has a muted effect.

Schmeeckle and Furbish were joined by Katherine Hamner, Miriam Borosund and Simon Mudd, all of Vanderbilt, in the project. They report their findings in the current issue of the Journal of Geophysical Research (Jan. 16, 2007) in "Rain splash of dry sand revealed by high speed imaging and sticky paper splash targets."

In the experiments, the researchers mounted a 20-foot long PVC pipe vertically and attached a syringe at the top of the pipe. The distance was great enough where raindrops, coming from the syringe, could achieve terminal velocity (the fastest speed they can fall through still air). The pipe blocks air currents from deflecting the drops.

"Without it we wouldn't be able to hit our target," Schmeeckle said.

The drops were aimed at a sand target 2.5 cm in diameter by 2 cm deep set flush to a surrounding surface covered with sticky paper. Depending on the syringe needle size, the researchers could adjust drop size from 0.5 mm to 5 mm. A 5 mm raindrop traveling at terminal velocity would hit the sand target at a relative force of 20 mph.

When a drop hit the target, a high-speed camera operating at 500 frames per second recorded the dynamic interactions between the water and the sand. In addition, sand grains ejected by each impact stuck to the surrounding paper where they hit, allowing the researchers to precisely plot their positions.

The researchers did several experiments simulating raindrops hitting sand on flat surfaces.

"The raindrops splashed particles in all directions, resembling ballistic trajectories of particles going up and out and then down," Schmeeckle said.

Then they angled the target to five inclinations (10, 15, 20, 25 and 30 degrees). With the target tilted, Schmeeckle said the researchers dispelled a 50-year old misconception about how rain splash transport works.

"We found that when the raindrop hits, very few particles actually move up slope and most of the particles move down slope," he said. "It kind of bulldozes in the down slope direction and you get a large ejection of particles moving down slope."

But gravity takes a back seat to momentum as the driver of this phenomenon.

"It's the momentum," Schmeeckle said. "As the raindrop comes in, it already has downward momentum and that momentum gets transferred to the down slope momentum of the soil particles."

This experimental result could have a big impact on soil erosion and add to the knowledge engineers use to devise systems to prevent such erosion on hills and mountains.

"The discovery is important for soil health," said Schmeeckle, who primarily studies sediment movement in rivers. "In semi arid and arid regions like ours, where there is not a lot of vegetation on hills, raindrops directly and dramatically affect soil as they hit.

"A lot of material transport from hill slopes will eventually make it into the river systems," he added. "This study will lead to a much better understanding of the processes of how soil is eroded and transported on hill slopes."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>