Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A graphic and intuitive method allows UGR students to solve Geology problems on-line

16.01.2007
Some of the objectives of the Teaching Innovation project are to substitute the difficult blackboard drawings for high-quality drawings, easy to arrange in sequence; replace the static system of book exposing with a more dynamic and interactive system; free students from taking notes and allow them to pay more attention to the class; provide students with an electronic book with an interactive system for a friendlier learning than the clasic book with static figures, etc.

The project is entitled "Aplicación de los gráficos animados por ordenador a la enseñanza de problemas de Geología" (An application of on-line animation graphics to teaching in Geology problems), coordinated by professor of Stratigraphy Francisco Delgado Salazar, from the University of Granada (Universidad de Granada); lecturers of the department of Stratigraphy and Paleontology Agustín Martín Algarra and Juan Antonio Vera Torres have also taken part in the project.

According to the coordinator, the aim of this UGR [http://www.ugr.es] project is that “after the class where the main problems are explained, students have at their disposal such problems and other similar ones to study them through a graphic and intuitive method either from home via Internet or from the Computer Classrooms in the Faculty.”

The project arises in view of the difficulties of training students of Geology problems when studying geometric problems: stratum direction and dips, veins, faults, stratum thickness, ore body potential, palinpastic reconstructions, etc. “With this method --says the coordinator of the teaching innovation project, Francisco Delgado—we pose a standard problem to the students, give an example of principle, show the way the problem is set out to make problem solving easier and, finally, we solve it step by step, using an interactive system of animated drawings as simple as possible; we have tried to make problem solving clear. When problems are difficult or laborious, either for the number of steps or the number of lines to draw to solve the problem, we have tried to differentiate every step in a clear way by colors to make graphic reading and understanding easier.”

Probably, always according to the coordinator, one of the most frustrating matters students run into is that if they dedicate lesson time to take notes of the blackboard drawings, transparencies or any other method, it is unlikely that they get the solution to the problem, since they are busy trying to reproduce as faithfully as possible blackboard drawings, which are not very precise themselves.

According to Francisco Delgado, the student often finds illegible or uncomprehensible drawings when studying at home, rarely accompanied by an explanation. In addition, drawings taken during the class often leave a lot to be desired as for angles, dimensions, etc., except in the case of those who are handy when using the square, triangle and compass, which makes study even more difficult.

“That very feeling of frustration detected in a lot of students -says the coordinator—drove me first to provide them with photocopies of the problem solving step by step, carried out with a CAD program, and later, to turn those static drawings into animated ones to simulate teacher´s problem solving on the blackboard. The first consequence expected is that students pay more attention to understand the geometric constructions when solving problems since they know that they can consult the problem, which is stored in a hardware, on-line, than to reproduce the drawings by hand on the blackboard, with the best of intentions, but rarely with the necessary quality and precision”.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>