Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry of Volcanic Fallout Reveals Secrets of Past Eruptions

09.01.2007
A team of American and French scientists has developed a method to determine the influence of past volcanic eruptions on climate and the chemistry of the upper atmosphere, and significantly reduce uncertainty in models of future climate change.

In the January 5 issue of the journal Science, the researchers from the University of California, San Diego, the National Center for Scientific Research (CNRS) and the University of Grenoble in France report that the chemical fingerprint of fallout from past eruptions reveals how high the volcanic material reached, and what chemical reactions occurred while it was in the atmosphere.

The work is particularly relevant because the effect of atmospheric particles, or aerosols, is a large uncertainty in models of climate, according to Mark Thiemens, Dean of UCSD’s Division of Physical Sciences and professor of chemistry and biochemistry.

“In predictions about global warming, the greatest amount of error is associated with atmospheric aerosols,” explained Thiemens, in whose laboratory the method, which is based on the measurement of isotopes—or forms of sulfur—was developed. “Now for the first time, we can account for all of the chemistry involving sulfates, which removes uncertainties in how these particles are made and transported. That’s a big deal with climate change.”

Determining the height of a past volcanic eruption provides important information about its impact on climate. If volcanic material only reaches the lower atmosphere, the effects are relatively local and short term because the material is washed out by rain. Eruptions that reach higher, up to the stratosphere, have a greater influence on climate.

“In the stratosphere, sulfur dioxide that was originally in the magma gets oxidized and forms droplets of sulfuric acid,” said Joël Savarino, a researcher at the CNRS and the University of Grenoble, who led the study. “This layer of acid can stay for years in the stratosphere because no liquid water is present in this part of the atmosphere. The layer thus acts as a blanket, reflecting the sunlight and therefore reducing the temperature at ground level, significantly and for many years.”

To distinguish eruptions that made it to the stratosphere from those that did not, the researchers examined the isotopes of sulfur in fallout preserved in the ice in Antarctica. The volcanic material is carried there by air currents. Thiemens, Savarino and two of their students traveled to Antarctica and recovered the samples by digging snow pits near the South Pole and Dome C, the new French/Italian inland station.

Sulfur that rises as high as the stratosphere, above the ozone layer, is exposed to short wavelength ultraviolet light. UV exposure creates a unique ratio of sulfur isotopes. Therefore the sulfur isotope signature in fallout reveals whether or not an eruption was stratospheric.

To develop the method, the team, which also included Mélanie Baroni, the first author on the paper who is a postdoctoral fellow working with Savarino, and Robert Delmas, a research director at the CNRS, focused on two volcanic eruptions. Both eruptions, the 1963 eruption of Mount Agung in Bali and the 1991 eruption of Mount Pinatubo in the Philippines, were stratospheric according to the isotope measurements.

“Young volcanoes have the advantage of having been documented by modern instruments, such as satellites or aircraft,” said Savarino, who began his investigations into sulfur isotope measurements when he was a postdoctoral fellow working with Thiemens. “We could therefore compare our measurements on volcanic fallout stored in snow with atmospheric observations.”

Not only did their isotope measurements match the atmospheric observations, they were also able to distinguish the Pinatubo eruption from the eruption of Cerro Hudson that occurred the same year. Cerro Hudson did not send material as high as the stratosphere and the fallout had a different sulfur isotope fingerprint than the fallout from Pinatubo.

Volcanic material from more ancient eruptions is preserved in Antarctica, but the older, deeper seasonal layers of ice are extremely thin as a result of the pressure from the overlying ice. Therefore, it is not currently feasible to extract enough fallout from the ice to apply the isotope method to all past volcanoes. However, data from eruptions in the recent past reveal what chemical reactions of sulfates occur in the upper atmosphere.

Some scientists have proposed that if global warming becomes severe, sulfates could be injected into the stratosphere in order to block some of the incoming solar radiation and reduce the temperature. Thiemens explained that understanding the chemical reactions of sulfates in the stratosphere is critical to determining if this approach would be effective.

“Sulfates can cause warming or cooling depending on how they are made,” he said. “They are usually white particles, which tend to reflect sunlight, but if they are made on dark particles like soot, they can absorb heat and worsen warming.”

The study was funded by the French Polar Institute (IPEV) and the National Science Foundation Office of Polar Programs.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>