Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drop in acid rain altering Appalachian stream water

14.12.2006
Appalachian hardwood forests may be getting a respite from acid rain but data from a long-term ecological study of stream chemistry suggests that the drop in acid rain may be changing biological activity in the ecosystem and hiking dissolved carbon dioxide in forest streams.

"These are unexpected results," says David DeWalle, professor of forest hydrology at Penn State. "Rising amounts of carbon dioxide in streams and soil could have implications for the forest ecosystem, and the carbon balance in general."

DeWalle and his colleagues have been monitoring stream water chemistry in the Appalachians since 1990. They are studying the effect of reduced sulfur emissions – required under the Clean Air Act – on the water quality of five streams in Pennsylvania.

"These streams are as pristine as you can get, and we have been sampling them nearly every month over the past 15 years," he says.

Some expected changes in stream chemistry are already showing. Water quality in the streams is gradually improving from the reduced sulfur emissions, and researchers are also seeing less nitrogen from the atmosphere and in the streams.

"This reduction in nitrogen deposition is yet to be seen in many parts of New England," DeWalle says. "We are probably seeing it earlier than others because we are pretty close to the sources of these emissions."

There have also been some unexpected changes. DeWalle and his Penn State colleagues Bryan Swistock, extension specialist, and Anthony Buda and Sarah MacDougall, graduate students, say they are recording rising amounts of dissolved carbon dioxide in all five streams.

DeWalle, whose work is funded by the U.S. Environmental Protection Agency, thinks that by reducing pollutants emitted to the atmosphere, we are creating a different set of conditions for organisms in the soil. The rising dissolved carbon dioxide in the streams, he suggests, might be traced to increased respiration by these organisms.

He explains that organic matter broken down by these organisms generates byproducts such as carbon dioxide, water and residual dissolved organic matter. The increased respiration, he adds, may be gradually increasing soil carbon dioxide and reducing the amount of residual organic matter. As the organisms break down more of the organic matter, there is less of it leaving as dissolved organic matter in stream water.

"There have been some experiments where they added nitrogen to the soil and saw a reduction in soil respiration. We have of course, reduced the nitrogen, and indicators of stream chemistry suggest that this may have caused the opposite reaction and stepped up the respiration," says DeWalle.

Though the stream chemistry data suggests increased respiration in the soil, researchers caution that the hypothesis needs to be tested with experiments that mimic reduced amounts of nitrogen in the atmosphere.

Penn State researchers are already seeing increasing amounts of silica and sodium in streams which may be from the weathering of minerals and sandstone bedrock, caused presumably by the increased carbonic acid in soil and groundwater.

"If you have higher carbon dioxide in the soil, you get more carbonic acid in the groundwater, which increases the weathering of minerals. You would not normally expect weathering rates to increase with reduced acid rain," DeWalle told attendees at the American Geophysical Union conference today (Dec. 12) in San Francisco.

Appalachian forests play a crucial role in maintaining a healthy ecosystem, and support thousands of jobs through the hardwood industry.

"This area is a region bigger than Pennsylvania, where we see declines in both sulfur and nitrogen emissions.

Although that is a positive thing, it is having an influence, it appears, on the forest ecosystem. Higher amounts of carbon dioxide in the soil means more of it ultimately may be emitted back to the atmosphere as a greenhouse gas," adds the Penn State researcher.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>