Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drop in acid rain altering Appalachian stream water

Appalachian hardwood forests may be getting a respite from acid rain but data from a long-term ecological study of stream chemistry suggests that the drop in acid rain may be changing biological activity in the ecosystem and hiking dissolved carbon dioxide in forest streams.

"These are unexpected results," says David DeWalle, professor of forest hydrology at Penn State. "Rising amounts of carbon dioxide in streams and soil could have implications for the forest ecosystem, and the carbon balance in general."

DeWalle and his colleagues have been monitoring stream water chemistry in the Appalachians since 1990. They are studying the effect of reduced sulfur emissions – required under the Clean Air Act – on the water quality of five streams in Pennsylvania.

"These streams are as pristine as you can get, and we have been sampling them nearly every month over the past 15 years," he says.

Some expected changes in stream chemistry are already showing. Water quality in the streams is gradually improving from the reduced sulfur emissions, and researchers are also seeing less nitrogen from the atmosphere and in the streams.

"This reduction in nitrogen deposition is yet to be seen in many parts of New England," DeWalle says. "We are probably seeing it earlier than others because we are pretty close to the sources of these emissions."

There have also been some unexpected changes. DeWalle and his Penn State colleagues Bryan Swistock, extension specialist, and Anthony Buda and Sarah MacDougall, graduate students, say they are recording rising amounts of dissolved carbon dioxide in all five streams.

DeWalle, whose work is funded by the U.S. Environmental Protection Agency, thinks that by reducing pollutants emitted to the atmosphere, we are creating a different set of conditions for organisms in the soil. The rising dissolved carbon dioxide in the streams, he suggests, might be traced to increased respiration by these organisms.

He explains that organic matter broken down by these organisms generates byproducts such as carbon dioxide, water and residual dissolved organic matter. The increased respiration, he adds, may be gradually increasing soil carbon dioxide and reducing the amount of residual organic matter. As the organisms break down more of the organic matter, there is less of it leaving as dissolved organic matter in stream water.

"There have been some experiments where they added nitrogen to the soil and saw a reduction in soil respiration. We have of course, reduced the nitrogen, and indicators of stream chemistry suggest that this may have caused the opposite reaction and stepped up the respiration," says DeWalle.

Though the stream chemistry data suggests increased respiration in the soil, researchers caution that the hypothesis needs to be tested with experiments that mimic reduced amounts of nitrogen in the atmosphere.

Penn State researchers are already seeing increasing amounts of silica and sodium in streams which may be from the weathering of minerals and sandstone bedrock, caused presumably by the increased carbonic acid in soil and groundwater.

"If you have higher carbon dioxide in the soil, you get more carbonic acid in the groundwater, which increases the weathering of minerals. You would not normally expect weathering rates to increase with reduced acid rain," DeWalle told attendees at the American Geophysical Union conference today (Dec. 12) in San Francisco.

Appalachian forests play a crucial role in maintaining a healthy ecosystem, and support thousands of jobs through the hardwood industry.

"This area is a region bigger than Pennsylvania, where we see declines in both sulfur and nitrogen emissions.

Although that is a positive thing, it is having an influence, it appears, on the forest ecosystem. Higher amounts of carbon dioxide in the soil means more of it ultimately may be emitted back to the atmosphere as a greenhouse gas," adds the Penn State researcher.

Amitabh Avasthi | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>