Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drop in acid rain altering Appalachian stream water

14.12.2006
Appalachian hardwood forests may be getting a respite from acid rain but data from a long-term ecological study of stream chemistry suggests that the drop in acid rain may be changing biological activity in the ecosystem and hiking dissolved carbon dioxide in forest streams.

"These are unexpected results," says David DeWalle, professor of forest hydrology at Penn State. "Rising amounts of carbon dioxide in streams and soil could have implications for the forest ecosystem, and the carbon balance in general."

DeWalle and his colleagues have been monitoring stream water chemistry in the Appalachians since 1990. They are studying the effect of reduced sulfur emissions – required under the Clean Air Act – on the water quality of five streams in Pennsylvania.

"These streams are as pristine as you can get, and we have been sampling them nearly every month over the past 15 years," he says.

Some expected changes in stream chemistry are already showing. Water quality in the streams is gradually improving from the reduced sulfur emissions, and researchers are also seeing less nitrogen from the atmosphere and in the streams.

"This reduction in nitrogen deposition is yet to be seen in many parts of New England," DeWalle says. "We are probably seeing it earlier than others because we are pretty close to the sources of these emissions."

There have also been some unexpected changes. DeWalle and his Penn State colleagues Bryan Swistock, extension specialist, and Anthony Buda and Sarah MacDougall, graduate students, say they are recording rising amounts of dissolved carbon dioxide in all five streams.

DeWalle, whose work is funded by the U.S. Environmental Protection Agency, thinks that by reducing pollutants emitted to the atmosphere, we are creating a different set of conditions for organisms in the soil. The rising dissolved carbon dioxide in the streams, he suggests, might be traced to increased respiration by these organisms.

He explains that organic matter broken down by these organisms generates byproducts such as carbon dioxide, water and residual dissolved organic matter. The increased respiration, he adds, may be gradually increasing soil carbon dioxide and reducing the amount of residual organic matter. As the organisms break down more of the organic matter, there is less of it leaving as dissolved organic matter in stream water.

"There have been some experiments where they added nitrogen to the soil and saw a reduction in soil respiration. We have of course, reduced the nitrogen, and indicators of stream chemistry suggest that this may have caused the opposite reaction and stepped up the respiration," says DeWalle.

Though the stream chemistry data suggests increased respiration in the soil, researchers caution that the hypothesis needs to be tested with experiments that mimic reduced amounts of nitrogen in the atmosphere.

Penn State researchers are already seeing increasing amounts of silica and sodium in streams which may be from the weathering of minerals and sandstone bedrock, caused presumably by the increased carbonic acid in soil and groundwater.

"If you have higher carbon dioxide in the soil, you get more carbonic acid in the groundwater, which increases the weathering of minerals. You would not normally expect weathering rates to increase with reduced acid rain," DeWalle told attendees at the American Geophysical Union conference today (Dec. 12) in San Francisco.

Appalachian forests play a crucial role in maintaining a healthy ecosystem, and support thousands of jobs through the hardwood industry.

"This area is a region bigger than Pennsylvania, where we see declines in both sulfur and nitrogen emissions.

Although that is a positive thing, it is having an influence, it appears, on the forest ecosystem. Higher amounts of carbon dioxide in the soil means more of it ultimately may be emitted back to the atmosphere as a greenhouse gas," adds the Penn State researcher.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>