Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midges send undeniable message -- planet is warming

13.12.2006
Small insects that inhabit some of the most remote parts of the United States are sending a strong message about climate change. New research suggests that changes in midge communities in some of these areas provide additional evidence that the globe is indeed getting warmer.

Researchers created a history of changing midge communities for six remote mountain lakes in the western United States. Midges, which resemble mosquitoes but usually don't bite, can live nearly anywhere in the world where there is fresh water.

The insect remains revealed a dramatic shift in the types of midges inhabiting these lakes in the last three decades, said David Porinchu, the study's lead author and an assistant professor of geography at Ohio State University.

“Climate change has had an overriding influence on the composition of the midge communities within these lakes,” he said. “The data suggest that the rate of warming seen in the last two decades is greater than any other time in the previous century.”

The data suggest that, starting around 25 years ago, warmer-water midges began to edge out cooler-water midge species around these remote lakes.

“People would like to believe that these mountainous environments may be immune to climate change, but these are some of the first areas to feel the impact of warmer temperatures,” Porinchu said.

He and his colleagues presented their findings December 15 in San Francisco at the annual meeting of the American Geophysical Union.

The researchers gathered sediment from six small lakes in the Great Basin of the western United States – a vast watershed bounded roughly by the Sierra Nevada and Rocky Mountain ranges. Since the lakes are accessible only by foot trail, the researchers carried in an inflatable raft during the summer months in order to collect sediment samples from the middle of the lakes. The lakes range from 8.2 feet (2.5 meters) to 34.5 feet (10.5 meters) deep.

The scientists collected sediment in cylindrical plastic tubes, gathering several samples from each lake. They didn't need much sediment – just four inches (10 cm) of lake-bottom residue can represent nearly 100 years' worth of sedimentation, Porinchu said.

“The amount of sediment that trickles out of the water column to the bottom of these lakes every year is so low because these lakes are at such high elevations – few, if any, trees grow at these elevations,” he said. “There just isn't much material entering the lakes.”

Once they were back in the laboratory, the researchers sliced the sediment cores into thin slivers about 0.2 inches (0.5 cm) thick. Each sliver represents a five or 10-year span, Porinchu said. They calculated the age of single sediment layers by using lead-210, an isotope of lead that decays at a constant rate and, therefore, can serve as a chronological aid.

Using a microscope, the researchers then searched the sediment for larval remains of the midges. Specifically, they were looking for larval head capsules, which are made of a hard, semi-transparent material called chitin. These head capsules become embedded in sediment once they are shed. Chitin, also a component of insect exoskeletons and the shells of crustaceans, doesn't readily degrade in the sediment of these lakes.

The researchers determined the type of midges that lived in the lakes based on specific variations in certain head capsule structures, such as differences in the number, size, shape and orientation of teeth.

“In the upper layers of most of the sediment samples – those representing the last 25 to 30 years – we see head capsules from midges that normally thrive in slightly warmer water temperatures,” Porinchu said. “And the cooler-water midges have nearly, or completely, disappeared.”

Surface water temperatures in these lakes have risen anywhere from 0.5 to 1 degree since the 1980s.

“Although that doesn't seem to be a huge increase, just a slight fluctuation in water temperatures can significantly affect the rate of egg and larval development,” Porinchu said.

And the majority of midge species living in these six lakes in the last 30 years thrive in temperatures ranging from 58.8 to 60 degrees F (14.9 to 15.6C), while cooler-water midges prefer temperatures in the 57 to 58.1F (13.9 to 14.5C) range.

“Above-average surface water temperatures typified the late 20th century in all of the lakes that we studied,” Porinchu said. “It's clearly an indication that something is happening that is already affecting aquatic ecosystems in these fragile, high-elevation lakes.”

Porinchu conducted the study with researchers from the National University of Ireland in Galway; the University of California, Los Angeles; the University of Western Ontario in London, Ontario; and Middlebury College in Middlebury, Vt.

David Porinchu | EurekAlert!
Further information:
http://www.osu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>