Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists offer new model for forecasting the likelihood of an earthquake

12.12.2006
In assessing the probability of an earthquake, scientists rely on two important pieces of data that are often inconsistent. The past geological record sometimes tells one story, while current measurements from the Global Positioning System (GPS) tell another. But a new forecasting model designed by Stanford University geophysicists may help close the gap.

"This is the most realistic model to date," said Kaj Johnson, assistant professor of geological sciences at Indiana University, who worked on the modeling project several years ago when he was a Stanford graduate student. "This is something people had been asking for years now. It's the next step."

Johnson and Stanford geophysics Professor Paul Segall will present their new probability model at 11:35 a.m. PT on Dec. 14, at the annual meeting of the American Geophysical Union in San Francisco during a talk titled "Distribution of Slip on San Francisco Bay Area Faults" in Room 307, Moscone Center South.

Measuring faults

An important component of earthquake-probability assessment is determining how fast a fault moves. One technique involves the use of GPS, which allows seismologists to measure the movement of various points on the surface of the Earth, then use these data to extrapolate underground fault movement. Another way to determine fault slip rates is to dig a trench across the fault and find the signatures of past earthquakes, a method called paleoseismology.

"People say, let's compare rates of fault movement from GPS to rates of fault movement from geologic studies," Segall said. "But it's as if you're measuring different parts of the same thing with different tools. The discrepancy can be quite big."

To bridge the gap, Segall and Johnson created a new model that weaves together everything known about how a fault moves. The idea for the model came when Segall was asked to speak at a conference on the "rate debate," which is how geophysicists refer to the GPS-paleoseismology discrepancy. That's when he realized that the standard model doesn't take into account that fault-slippage rates vary over time.

This time dependence is important, because GPS doesn't measure fault slippage directly. Rather, it measures how quickly points on the surface of the Earth are moving. Then scientists try to fit these data into mathematical models to estimate the rate of slip. "Because of the time-dependent rate, your estimate depends on where you are in the earthquake cycle," Segall said. "So if you use a model that doesn't take that into account, you will get a slip rate that's different."

The scientists hope that their new updated model can give a more accurate picture of slip rates and reconcile the two pieces of fault data.

California and Asia

With the new model, the team confirmed that the slip rates from GPS and from the geological record for the San Francisco Bay Area are relatively consistent. "Along the San Andreas system, the numbers tend to come out in reasonable agreement," Segall said.

The next step for the scientists is to use their time-dependent model to scrutinize faults in other tectonically active regions, such as China, where there is a large disparity between contemporary GPS data and the paleoseismological record. "We want to take the same philosophy and procedure and apply it to different places in the world where the discrepancy can be quite big," Segall noted. "We're developing a strategy for how to move forward. We're still very much in the progress phase."

Johnson is working on applying the new model to faults in Taiwan and Tibet, where the earthquake hazard is great. "This can help inform people who make the forecasts," Johnson said. "These new time-dependent models are going to become the norm, I think."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>