Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists offer new model for forecasting the likelihood of an earthquake

12.12.2006
In assessing the probability of an earthquake, scientists rely on two important pieces of data that are often inconsistent. The past geological record sometimes tells one story, while current measurements from the Global Positioning System (GPS) tell another. But a new forecasting model designed by Stanford University geophysicists may help close the gap.

"This is the most realistic model to date," said Kaj Johnson, assistant professor of geological sciences at Indiana University, who worked on the modeling project several years ago when he was a Stanford graduate student. "This is something people had been asking for years now. It's the next step."

Johnson and Stanford geophysics Professor Paul Segall will present their new probability model at 11:35 a.m. PT on Dec. 14, at the annual meeting of the American Geophysical Union in San Francisco during a talk titled "Distribution of Slip on San Francisco Bay Area Faults" in Room 307, Moscone Center South.

Measuring faults

An important component of earthquake-probability assessment is determining how fast a fault moves. One technique involves the use of GPS, which allows seismologists to measure the movement of various points on the surface of the Earth, then use these data to extrapolate underground fault movement. Another way to determine fault slip rates is to dig a trench across the fault and find the signatures of past earthquakes, a method called paleoseismology.

"People say, let's compare rates of fault movement from GPS to rates of fault movement from geologic studies," Segall said. "But it's as if you're measuring different parts of the same thing with different tools. The discrepancy can be quite big."

To bridge the gap, Segall and Johnson created a new model that weaves together everything known about how a fault moves. The idea for the model came when Segall was asked to speak at a conference on the "rate debate," which is how geophysicists refer to the GPS-paleoseismology discrepancy. That's when he realized that the standard model doesn't take into account that fault-slippage rates vary over time.

This time dependence is important, because GPS doesn't measure fault slippage directly. Rather, it measures how quickly points on the surface of the Earth are moving. Then scientists try to fit these data into mathematical models to estimate the rate of slip. "Because of the time-dependent rate, your estimate depends on where you are in the earthquake cycle," Segall said. "So if you use a model that doesn't take that into account, you will get a slip rate that's different."

The scientists hope that their new updated model can give a more accurate picture of slip rates and reconcile the two pieces of fault data.

California and Asia

With the new model, the team confirmed that the slip rates from GPS and from the geological record for the San Francisco Bay Area are relatively consistent. "Along the San Andreas system, the numbers tend to come out in reasonable agreement," Segall said.

The next step for the scientists is to use their time-dependent model to scrutinize faults in other tectonically active regions, such as China, where there is a large disparity between contemporary GPS data and the paleoseismological record. "We want to take the same philosophy and procedure and apply it to different places in the world where the discrepancy can be quite big," Segall noted. "We're developing a strategy for how to move forward. We're still very much in the progress phase."

Johnson is working on applying the new model to faults in Taiwan and Tibet, where the earthquake hazard is great. "This can help inform people who make the forecasts," Johnson said. "These new time-dependent models are going to become the norm, I think."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>