Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists offer new model for forecasting the likelihood of an earthquake

In assessing the probability of an earthquake, scientists rely on two important pieces of data that are often inconsistent. The past geological record sometimes tells one story, while current measurements from the Global Positioning System (GPS) tell another. But a new forecasting model designed by Stanford University geophysicists may help close the gap.

"This is the most realistic model to date," said Kaj Johnson, assistant professor of geological sciences at Indiana University, who worked on the modeling project several years ago when he was a Stanford graduate student. "This is something people had been asking for years now. It's the next step."

Johnson and Stanford geophysics Professor Paul Segall will present their new probability model at 11:35 a.m. PT on Dec. 14, at the annual meeting of the American Geophysical Union in San Francisco during a talk titled "Distribution of Slip on San Francisco Bay Area Faults" in Room 307, Moscone Center South.

Measuring faults

An important component of earthquake-probability assessment is determining how fast a fault moves. One technique involves the use of GPS, which allows seismologists to measure the movement of various points on the surface of the Earth, then use these data to extrapolate underground fault movement. Another way to determine fault slip rates is to dig a trench across the fault and find the signatures of past earthquakes, a method called paleoseismology.

"People say, let's compare rates of fault movement from GPS to rates of fault movement from geologic studies," Segall said. "But it's as if you're measuring different parts of the same thing with different tools. The discrepancy can be quite big."

To bridge the gap, Segall and Johnson created a new model that weaves together everything known about how a fault moves. The idea for the model came when Segall was asked to speak at a conference on the "rate debate," which is how geophysicists refer to the GPS-paleoseismology discrepancy. That's when he realized that the standard model doesn't take into account that fault-slippage rates vary over time.

This time dependence is important, because GPS doesn't measure fault slippage directly. Rather, it measures how quickly points on the surface of the Earth are moving. Then scientists try to fit these data into mathematical models to estimate the rate of slip. "Because of the time-dependent rate, your estimate depends on where you are in the earthquake cycle," Segall said. "So if you use a model that doesn't take that into account, you will get a slip rate that's different."

The scientists hope that their new updated model can give a more accurate picture of slip rates and reconcile the two pieces of fault data.

California and Asia

With the new model, the team confirmed that the slip rates from GPS and from the geological record for the San Francisco Bay Area are relatively consistent. "Along the San Andreas system, the numbers tend to come out in reasonable agreement," Segall said.

The next step for the scientists is to use their time-dependent model to scrutinize faults in other tectonically active regions, such as China, where there is a large disparity between contemporary GPS data and the paleoseismological record. "We want to take the same philosophy and procedure and apply it to different places in the world where the discrepancy can be quite big," Segall noted. "We're developing a strategy for how to move forward. We're still very much in the progress phase."

Johnson is working on applying the new model to faults in Taiwan and Tibet, where the earthquake hazard is great. "This can help inform people who make the forecasts," Johnson said. "These new time-dependent models are going to become the norm, I think."

Mark Shwartz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>