Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient ape ruled out of man’s ancestral line

08.12.2006
ANCIENT remains, once thought to be a key link in the evolution of mankind, have now been shown to be 400,000 years too young to be a part of man’s family tree.

The remains of the apeman, dubbed Little Foot, were discovered in a cave complex at Sterkfontein by a local South African team in 1997. Its bones preserved in sediment layers, it is the most complete hominid fossil skeleton ever found.

Little Foot is of the genus Australopithecus, thought by some to be part of the ancestral line which led directly to man. But research by Dr Jo Walker and Dr Bob Cliff of the University of Leeds School of Earth and Environment, with Dr Alf Latham of Liverpool University's School of Archaeology, Classics and Egyptology, shows the remains are more than a million years younger than earlier estimates.

The team used uranium lead chronology to date the remains. Working on extracts of stalagmite deposits from immediately above and below the body, they dated the skeleton at around 2.2 million years old.

Their findings, published in the American journal Science, are controversial. Earlier estimates had put the age of Little Foot at three to four million years old placing it potentially on a direct line to humans.

The first recognisable stone tools appeared in Africa around 2.6 million years ago, but they were not made by Australopiths. Rather it is thought the first tool maker was Homo habilis, whose evolution is believed to have led directly to man. Rather than being older than Homo habilis – and a possible direct ancestor – Little Foot is more likely a distant cousin.

His remains are cemented in hard mineral deposits in the Sterkfontein cave complex which has yielded a number of other ancient finds. It is thought he either fell down a shaft or somehow got trapped in the cave and died there to be covered by the sediment layers from which he is now being slowly extracted. These sediments are themselves sandwiched between stalagmite layers which provided the materials for the dating process.

Australopithecus walked on two legs, but stood just 130cm tall and had a brain comparable in size with a modern chimpanzee. As Dr Walker explained: “In many of these finds, the smallest bones have disintegrated, but here the feet and hands are well preserved - and these could enable researchers to show how well adapted this early primate was to walking on two feet.”

But the sediment encasing Little Foot is harder than the bone – making extracting him a painstaking process for the South African team.

And Drs Latham and Cliff have now turned their own attention to further Australopith findings at Makapansgat, also in South Africa, where other specimens of Australopithecus have been found.

Simon Jenkins | alfa
Further information:
http://www.leeds.ac.uk

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>