Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic noise provides valuable geophysical information

07.12.2006
The proper processing of acoustic noise can provide a wealth of information. Geophysicists have used seismic background noise measurements to reconstruct the crustal structure under Southern California.

The advantage of using existing acoustic noise is that signals only need to be recorded and not produced. Researchers at TU Delft and the Colorado School of Mines have generalised the underlying theory and found that acoustic noise can be used for a much wider scale of physical applications than was previously thought possible. The researchers will publish their findings in Physical Review Letters on 8 December 2006.

As acoustic noise travels through a medium, such as the earth's crust, it compiles information. In recent years it was discovered that only a few simple processes (cross-correlation) were needed to extract a meaningful signal from acoustic noise. Geophysicists Kees Wapenaar and Evert Slob of TU Delft, and Roel Snieder of the Colorado School of Mines, have now developed a unified theory that extends the extraction of impulse responses from background noise for more general situations. This theory includes electromagnetic noise in conducting media, acoustic noise in flowing and viscous media, and even diffusive transport phenomena. Moreover, the theory predicts that coupled processes, such as seismo-electric effect and the associated electrokinetic reflections, can also be retrieved from the background noise measurements.

It appears that background noise contains more information than one could possibly dream of several years ago. The theory can be used for 'remote sensing without a source' for a wide range of physical applications that include the determination of parameters of flowing media, viscous media, as well as the electrokinetic coupling parameters of porous reservoir rock. In partnership with Shell, the researchers have since created seismic reflection data from background noise that was recorded in a desert in the Middle East. Moreover, they expect their research methods to be applied in, for example, the LOFAR-project.

Roy Meijer | alfa
Further information:
http://www.tudelft.nl

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>