Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Climate and the Solar Cycle

06.12.2006
EGU Journal Highlights - Atmospheric Chemistry and Physics - December 2006

How much of global climate change is caused by fluctuations of the Sun's radiation? A reliable assessment of human-induced global warming requires an answer to this question. Now it appears that the influence of the solar cycle on Earth's climate is much less than most atmospheric scientists assumed so far.

This is the argument of Jan Kazil, Edward R. Lovejoy, Mary C. Barth and Keran O'Brien from NOAA, NCAR, the University of Colorado and Northern Arizona University. They published their findings in the on-line journal Atmospheric Chemistry and Physics of the European Geosciences Union.

Read article: http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html
During the minimum phase of the Sun's decadal activity cycle, the solar magnetic field weakens and allows more galactic cosmic rays to reach Earth's atmosphere. It appears that global cloud cover and reflectivity could be enhanced at solar minimum compared to solar maximum, and more sunlight reflected back to space.

This is caused by a complex chain of events whereby more ions lead to an increased aerosol production in the atmosphere. In this paper Kazil and colleagues show that this effect accounts for a variation in warming of the Earth by the Sun of no more than 0.22 W/m2 in the course of a solar cycle. A second finding supports the theory that aerosol particles observed near the surface of tropical oceans may have their origin at higher altitudes, where they form from convectively lifted near-surface air.

Clouds are brighter than the Earth's surface and reflect a considerable amount of the incoming solar radiation back to space. Hence, they strongly influence the planet's temperature and climate. Aerosols, which are small particles in the air, are essential for the formation of cloud droplets, and changes in aerosol concentrations and properties affect the reflectivity of clouds. Aerosols are either directly emitted into the atmosphere or form from gas phase constituents such as sulphuric acid.

Atmospheric ions are likely to act as agents for the formation of liquid aerosols via the formation of "seed particles" (called condensation nuclei) because they greatly stabilize small clusters of molecules with respect to evaporation.

The main source of ions in the atmosphere are galactic cosmic rays, whose intensity is modulated by the decadal solar activity cycle. It has therefore been suggested that the change in ion production resulting from the modulation of galactic cosmic rays by the solar cycle influence atmospheric aerosol concentrations. This, in turn, leads to a variation in cloud cover, and consequently the amount of sunlight reflected back to space.

Kazil et al. used a computer model which describes the formation of sulphuric acid / water aerosol particles from ions on global scales. Their model simulations show that at solar minimum, when the ion production is at its maximum, warming of the Earth by sunlight is reduced by at most 0.22 W/m2. This is due to the enhanced cloud reflection, relative to solar maximum when ion production is at its minimum. This upper limit to the effect is less than the concurrent reduction by 0.24 W/m2 in warming of the Earth by sunlight due to the decrease of solar brightness from solar maximum to minimum.

This finding indicates only a weak effect of galactic cosmic rays on clouds due to aerosol formation from ions, and hence on the Earth's climate. These results, however, do not preclude the possibility that other mechanisms connect solar variability and climate.

A second finding is that over tropical oceans, aerosol generation from the gas phase near the surface is inefficient compared with that at higher altitudes. Here, aerosol particles form readily because of the combination of low temperatures and frequent injection of near-surface air by convection. This supports the theory that aerosol particles observed near the surface of tropical oceans may have their origin at higher altitudes, where they form due to convective lifting of near-surface air.

Aerosol nucleation over oceans and the role of galactic cosmic rays
J. Kazil, E. R. Lovejoy, M. C. Barth, and K. O'Brien
Atmospheric Chemistry and Physics, Volume 6, Number 12, pp. 4905-4924.
Read the full article: http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html

Author's address:

Dr Jan Kazil
Cooperative Institute for Research in Environmental Sciences
University of Colorado
Boulder, CO, USA
jan.kazil@noaa.gov
+1 303 497-7994

Dr. Frederik M. van der Wateren | idw
Further information:
http://www.egu-media.net/
http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>