Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Climate and the Solar Cycle

06.12.2006
EGU Journal Highlights - Atmospheric Chemistry and Physics - December 2006

How much of global climate change is caused by fluctuations of the Sun's radiation? A reliable assessment of human-induced global warming requires an answer to this question. Now it appears that the influence of the solar cycle on Earth's climate is much less than most atmospheric scientists assumed so far.

This is the argument of Jan Kazil, Edward R. Lovejoy, Mary C. Barth and Keran O'Brien from NOAA, NCAR, the University of Colorado and Northern Arizona University. They published their findings in the on-line journal Atmospheric Chemistry and Physics of the European Geosciences Union.

Read article: http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html
During the minimum phase of the Sun's decadal activity cycle, the solar magnetic field weakens and allows more galactic cosmic rays to reach Earth's atmosphere. It appears that global cloud cover and reflectivity could be enhanced at solar minimum compared to solar maximum, and more sunlight reflected back to space.

This is caused by a complex chain of events whereby more ions lead to an increased aerosol production in the atmosphere. In this paper Kazil and colleagues show that this effect accounts for a variation in warming of the Earth by the Sun of no more than 0.22 W/m2 in the course of a solar cycle. A second finding supports the theory that aerosol particles observed near the surface of tropical oceans may have their origin at higher altitudes, where they form from convectively lifted near-surface air.

Clouds are brighter than the Earth's surface and reflect a considerable amount of the incoming solar radiation back to space. Hence, they strongly influence the planet's temperature and climate. Aerosols, which are small particles in the air, are essential for the formation of cloud droplets, and changes in aerosol concentrations and properties affect the reflectivity of clouds. Aerosols are either directly emitted into the atmosphere or form from gas phase constituents such as sulphuric acid.

Atmospheric ions are likely to act as agents for the formation of liquid aerosols via the formation of "seed particles" (called condensation nuclei) because they greatly stabilize small clusters of molecules with respect to evaporation.

The main source of ions in the atmosphere are galactic cosmic rays, whose intensity is modulated by the decadal solar activity cycle. It has therefore been suggested that the change in ion production resulting from the modulation of galactic cosmic rays by the solar cycle influence atmospheric aerosol concentrations. This, in turn, leads to a variation in cloud cover, and consequently the amount of sunlight reflected back to space.

Kazil et al. used a computer model which describes the formation of sulphuric acid / water aerosol particles from ions on global scales. Their model simulations show that at solar minimum, when the ion production is at its maximum, warming of the Earth by sunlight is reduced by at most 0.22 W/m2. This is due to the enhanced cloud reflection, relative to solar maximum when ion production is at its minimum. This upper limit to the effect is less than the concurrent reduction by 0.24 W/m2 in warming of the Earth by sunlight due to the decrease of solar brightness from solar maximum to minimum.

This finding indicates only a weak effect of galactic cosmic rays on clouds due to aerosol formation from ions, and hence on the Earth's climate. These results, however, do not preclude the possibility that other mechanisms connect solar variability and climate.

A second finding is that over tropical oceans, aerosol generation from the gas phase near the surface is inefficient compared with that at higher altitudes. Here, aerosol particles form readily because of the combination of low temperatures and frequent injection of near-surface air by convection. This supports the theory that aerosol particles observed near the surface of tropical oceans may have their origin at higher altitudes, where they form due to convective lifting of near-surface air.

Aerosol nucleation over oceans and the role of galactic cosmic rays
J. Kazil, E. R. Lovejoy, M. C. Barth, and K. O'Brien
Atmospheric Chemistry and Physics, Volume 6, Number 12, pp. 4905-4924.
Read the full article: http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html

Author's address:

Dr Jan Kazil
Cooperative Institute for Research in Environmental Sciences
University of Colorado
Boulder, CO, USA
jan.kazil@noaa.gov
+1 303 497-7994

Dr. Frederik M. van der Wateren | idw
Further information:
http://www.egu-media.net/
http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>