Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the wake of a pending quake

05.12.2006
The seismically active Indonesian island of Sumatra has been hit repeatedly by tsunamis in the past -- and may now be due for another

Research into ancient earthquakes by scientists at USC and Caltech shows that within the next few decades another tsunami from another giant earthquake is likely to flood densely populated sections of western coastal Sumatra, south of those that devastated by the tsunami of Dec. 26, 2004.

The four researchers have modeled the process by which past quakes have flooded cities on that coast, hoping that a more detailed understanding of the future waves will speed preparations that could save lives. Their work will appear in the Proceedings of the National Academy of Sciences (PNAS) on December 4.

"The message of the 2004 tsunami has not been lost, at least in academia," said study participant Costas Synolakis, the director of the USC Viterbi School of Engineering Tsunami Reseach Center. "We are trying to be proactive and help prevent a similar disaster."

Fellow participant Kerry Sieh of Caltech explained, "When we tell people living along this 700-km section of the Sumatran coast that they will likely experience a big tsunami within the next 30 years, they ask for details. How much time after the earthquake will they have before the tsunami strikes" How big will the waves be" How far inland should they be prepared to run" What areas are likely to suffer tsunami damage" We can't answer these important questions without doing the work that we did for this paper."

The same big fault, or megathrust, that caused the tsunami of 2004 extends much farther southeastward, beneath the Indian ocean, just off the southwest coast of Sumatra. Rupture of this section of the megathrust, under the Mentawai islands, produced two great quakes and tsunamis in 1797 and 1833. Such events appear to recur on average every 230 years.

Samples of coral from the islands show how much these previous quakes lifted the sea floor. The patterns of uplift gave the scientists the information they needed to do computer simulations of the historical tsunamis. Synolakis says that the impact of the computed tsunamis is consistent with historical accounts.

The researchers say that this consistency gives them more confidence when they use the same model to evaluate worst-case scenarios from plausible future quakes. USC's Jose Borrero, the senior author of the study, says the results "confirm a substantial exposure of coastal Sumatran communities to tsunami surges." In particular, the coastal city of Bengkalu, with a population of 350,000, showed flooding in its river floodplain that extended up to several kilometers inland.

In the model, offshore islands appear to somewhat shield the larger city of Padang, but even then, the 1797 tsunami was reported to have carried a 200-ton English vessel into the town approximately a kilometer upstream, with smaller vessels carried yet further.

"The population of Padang in 1797 and 1833 was a few thousand," Sieh says. "Now it is about 800,000, and most of it is within a few meters of sea level. We hope that these initial results will help focus educational efforts, emergency preparedness activities, and changes in the basic infrastructure of cities and towns along the Sumatran coast."

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>