Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stormy Days Ahead for Coral Reefs

30.11.2006
The increasing violence of storms under global climate change will have major effects on coral reefs – and has important implications for their future management.

A scientific team from the ARC Centre of Excellence for Coral Reef Studies (CoECRS) at James Cook University has produced the world’s first engineering model to predict how much damage a reef is likely to suffer when confronted with might of an angry sea.

In a paper in the international scientific journal Nature,Dr Joshua Madin and Dr Sean Connolly use mathematical models to calculate the forces that coral is subjected to by wave, storm surge or tsunami, and the probability of the colonies being ripped from the sea-bed.

How coral assemblages respond to the power of the sea is essential for understanding the natural distribution of coral types on present-day reefs as well as for projecting how they will change in response to more violent or frequent storms, the researchers say.

“Coral reef experts have long had a general sense of which coral shapes are more vulnerable during storms than others,” says the study’s lead author, Dr. Madin, who now works at the National Centre for Ecological Analysis and Synthesis (NCEAS) in California, USA. “However, to really predict how these events impact the dynamics of coral reefs we needed a way to quantify these vulnerabilities.”

“Our study offers a solution to this longstanding problem by factoring in the shape of different coral colonies, the strength of the sea-bed to which they attach and the change in force of the waves as they move across the reef.

“This enables us to predict the likely changes in composition of the coral in response to present and future storms or tsunamis.”

This understanding, in turn, can be used by managers to better understand how the world’s coral reefs might change under a more unpredictable climate, the researchers say. “The predictive tool we have developed allows managers to assess the vulnerability of their reefs to extreme wave events,” says Dr. Madin. “The ability to estimate the potential damage on a reef for different disaster scenarios could help managers plan for economic losses as well as promote strategies that help the reef recover.”

The researchers’ model uses mathematical models borrowed from engineering theory to translate the movement of storm waves into mechanical stresses on the coral in different parts of the reef, incorporates the various shapes of coral colonies and calculates whether they will be dislodged during extreme weather.

The research introduces a new concept – colony shape factor (CSF) – to translate the myriad shapes and sizes of coral colonies onto a simple scale that measures their vulnerability to dislodgment. Any severe event, like a cyclone, imposes a threshold that can be scored on the same scale, allowing scientists to determine which corals will live and which will die.

The most vulnerable corals are the table corals which have a broad flat top supported by a narrow stalk, making them more susceptible to strong wave forces than bushy or mounded corals. Vulnerability also depends on whether the coral grows on the front, crest, flat or the back of the reef, where the force of the waves progressively dies away.

The team ran a field test at Lizard Island, in the northern part of the Great Barrier Reef, taking digital photographs of corals, and calculating their vulnerability.

They found that the threshold imposed by the previous year’s biggest storm predicted the pattern of coral sizes and shapes almost perfectly. “There were a lot of table corals present that went right up to the threshold from the last big storm, and then suddenly nothing above it,” says Dr Connolly, a CoECRS researcher and Senior Lecturer at James Cook University. “They even followed the predicted trends from the reef crest to the reef back.”

The researchers say that more severe storms, by themselves, would probably not pose a large threat to reefs. “Corals are adapted to life in stormy seas. Even the vulnerable species are quite stable when they’re young,” says Dr Connolly. “They also tend to grow and mature quickly, so the species can recover before the next big storm arrives.”

However, one effect of the increased production of greenhouse gases is an increase in the acidity of the ocean. This is likely to reduce the stability of coral reefs, and amplify the damage done by tropical storms in coming decades.

Moreover, other effects of global warming and human activity could impair reefs’ capacity to bounce back from periods of high wave forces, say the researchers. These include episodes of unusually hot temperatures, which can cause corals’ cells to become toxic (“coral bleaching”); and overfishing, which can deplete the fish that eat seaweeds and dead coral and keep the reef clear for the next generation of corals.

“Regardless of whether we think of more severe storms as a looming threat or just the ramping up of a natural cycle, one thing is certain,” says Dr Connolly. “To predict how coral reefs will look under different future scenarios, and to plan accordingly, we needed to know exactly how wave forces impact who lives and who dies on the reef. These new models provide us with that essential tool.”

More information:
Josh Madin, National Center for Ecological Analysis and Synthesis, +1 (805) 893 7108 or +1 (805) 452 7017
Dr Sean Connolly, ARC Centre of Excellence for Coral Reef Studies & JCU, 07 4781 4242 or 0419422815
Jenny Lappin, ARC Centre of Excellence for Coral Reef Studies, 07 4781 4222
Jim O’Brien, James Cook University Media Office, 07 4781 4822
Margaret Connors, National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, USA, +1 (805) 892 4728

Sean Connolly | EurekAlert!
Further information:
http://www.coralcoe.org.au/

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>