3-D computer models aid research of Earth's core

The article reveals that scientists are now able to directly measure heat that moves from the molten metal of Earth’s core into a region at the base of the mantle, a boundary located halfway to Earth’s center, about 1,740 miles deep. Measuring heat deep inside the earth is important because the intense temperatures drive processes like the movement of tectonic plates.

For his contribution to the research, Michael S. Thorne, who holds a dual appointment with the Geophysical Institute and the Arctic Region Supercomputing Center (ARSC) at the University of Alaska Fairbanks, created 3-dimensional simulations of earthquakes, allowing scientists to see how seismic waves travel through the earth. These simulations are able to predict ground motion on earth’s surface producing what is known as synthetic seismograms. The simulations of wave behavior assist scientists as they identify how material is moving inside the earth, specifically at the core-mantle boundary deep beneath the Pacific plate.

Thorne put in an impressive 70,000 computing hours on the ARSC IBM supercomputer, “Iceberg,” for this project.

Media Contact

Michael S. Thorne EurekAlert!

More Information:

http://www.alaska.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors