Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Resilient form of plant carbon gives new meaning to term 'older than dirt'

A particularly resilient type of carbon from the first plants to regrow after the last ice age – and that same type of carbon from all the plants since – appears to have been accumulating for 11,000 years in the forests of British Columbia, Canada.

It's as if the carbon, which comes from the waxy material plants generate to protect their foliage from sun and weather, has been going into a bank account where only deposits are being made and virtually no withdrawals.

Modelers of the Earth's carbon cycle, who've worked on the assumption that this type of carbon remains in the soils only 1,000 to 10,000 years before microorganisms return it to the atmosphere as carbon dioxide, will need to revise their thinking if findings reported in the Nov. 24 issue of Science are typical of other northern forests.

"Our results about the resilience of this particular kind of carbon suggest that the turnover time of this carbon pool may be 10,000 to 100,000 years," says Rienk Smittenberg, a research associate with the University of Washington School of Oceanography and lead author of the paper. He did the work while at the Royal Netherlands Institute of Sea Research.

Soils harbor the third-largest pool of carbon in the world behind the carbon locked deep in the Earth as fossil fuel oils and coal and the carbon that is dissolved in the world's oceans.

In soils, the more edible kinds of carbon from plants are quickly digested by bacteria and turned back into carbon dioxide. But about half the organic carbon in soils is less edible or protected from the bacteria, making it ultimately responsible for long-term carbon storage on land, the authors say.

This carbon pool is not likely to have a role in offsetting increased greenhouse carbon dioxide in the atmosphere any time soon because of the very slow processes at work, Smittenberg says. Instead a better estimate of how long that carbon persists in soils is important for modelers interested in carbon reserves on a timescale of 1,000 years or who are interested in changing carbon storage on land through time as vegetation changes.

For this work, the researchers obtained sediment cores from Saanich Inlet, a fjord on Vancouver Island in British Columbia. There low-temperature oxygen-starved bottom waters help preserve annual layers of sediments, some no less than a half-inch thick, that include matter from forest soils carried by water into the inlet.

Smittenberg used organic chemistry to isolate the plant wax molecules from other kinds of carbon, such as that derived from marine algae. Co-author Tim Eglinton of Woods Hole Oceanographic Institution did the radiocarbon testing.

Today's soils are comprised of a mix of organic matter that is 11,000 years old, zero years old from today's input and every age in between, Smittenberg says. The average age of the resilient waxy carbon is 5,500 years right now.

"It is likely that at least some of the resilient carbon has disappeared from the soils," he says. "It wouldn't be possible, for instance, to measure any in the fjord sediments if some of it hadn't eroded away," he says. "But this loss is relatively small compared to what is staying in the soils and the addition of more resilient organic matter.

"Thus the system is far from equilibrium as current models assume," he says.

If the findings hold true in other northern forests, it would put the terrestrial biosphere in a more prominent position as a slow but progressively important atmospheric carbon sink on geologic time scales. It could even influence current predictions about carbon cycling and soil carbon storage in response to increasing amounts of carbon dioxide in the atmosphere, the co-authors conclude.

Sandra Hines | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>