Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resilient form of plant carbon gives new meaning to term 'older than dirt'

27.11.2006
A particularly resilient type of carbon from the first plants to regrow after the last ice age – and that same type of carbon from all the plants since – appears to have been accumulating for 11,000 years in the forests of British Columbia, Canada.

It's as if the carbon, which comes from the waxy material plants generate to protect their foliage from sun and weather, has been going into a bank account where only deposits are being made and virtually no withdrawals.

Modelers of the Earth's carbon cycle, who've worked on the assumption that this type of carbon remains in the soils only 1,000 to 10,000 years before microorganisms return it to the atmosphere as carbon dioxide, will need to revise their thinking if findings reported in the Nov. 24 issue of Science are typical of other northern forests.

"Our results about the resilience of this particular kind of carbon suggest that the turnover time of this carbon pool may be 10,000 to 100,000 years," says Rienk Smittenberg, a research associate with the University of Washington School of Oceanography and lead author of the paper. He did the work while at the Royal Netherlands Institute of Sea Research.

Soils harbor the third-largest pool of carbon in the world behind the carbon locked deep in the Earth as fossil fuel oils and coal and the carbon that is dissolved in the world's oceans.

In soils, the more edible kinds of carbon from plants are quickly digested by bacteria and turned back into carbon dioxide. But about half the organic carbon in soils is less edible or protected from the bacteria, making it ultimately responsible for long-term carbon storage on land, the authors say.

This carbon pool is not likely to have a role in offsetting increased greenhouse carbon dioxide in the atmosphere any time soon because of the very slow processes at work, Smittenberg says. Instead a better estimate of how long that carbon persists in soils is important for modelers interested in carbon reserves on a timescale of 1,000 years or who are interested in changing carbon storage on land through time as vegetation changes.

For this work, the researchers obtained sediment cores from Saanich Inlet, a fjord on Vancouver Island in British Columbia. There low-temperature oxygen-starved bottom waters help preserve annual layers of sediments, some no less than a half-inch thick, that include matter from forest soils carried by water into the inlet.

Smittenberg used organic chemistry to isolate the plant wax molecules from other kinds of carbon, such as that derived from marine algae. Co-author Tim Eglinton of Woods Hole Oceanographic Institution did the radiocarbon testing.

Today's soils are comprised of a mix of organic matter that is 11,000 years old, zero years old from today's input and every age in between, Smittenberg says. The average age of the resilient waxy carbon is 5,500 years right now.

"It is likely that at least some of the resilient carbon has disappeared from the soils," he says. "It wouldn't be possible, for instance, to measure any in the fjord sediments if some of it hadn't eroded away," he says. "But this loss is relatively small compared to what is staying in the soils and the addition of more resilient organic matter.

"Thus the system is far from equilibrium as current models assume," he says.

If the findings hold true in other northern forests, it would put the terrestrial biosphere in a more prominent position as a slow but progressively important atmospheric carbon sink on geologic time scales. It could even influence current predictions about carbon cycling and soil carbon storage in response to increasing amounts of carbon dioxide in the atmosphere, the co-authors conclude.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>