Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resilient form of plant carbon gives new meaning to term 'older than dirt'

27.11.2006
A particularly resilient type of carbon from the first plants to regrow after the last ice age – and that same type of carbon from all the plants since – appears to have been accumulating for 11,000 years in the forests of British Columbia, Canada.

It's as if the carbon, which comes from the waxy material plants generate to protect their foliage from sun and weather, has been going into a bank account where only deposits are being made and virtually no withdrawals.

Modelers of the Earth's carbon cycle, who've worked on the assumption that this type of carbon remains in the soils only 1,000 to 10,000 years before microorganisms return it to the atmosphere as carbon dioxide, will need to revise their thinking if findings reported in the Nov. 24 issue of Science are typical of other northern forests.

"Our results about the resilience of this particular kind of carbon suggest that the turnover time of this carbon pool may be 10,000 to 100,000 years," says Rienk Smittenberg, a research associate with the University of Washington School of Oceanography and lead author of the paper. He did the work while at the Royal Netherlands Institute of Sea Research.

Soils harbor the third-largest pool of carbon in the world behind the carbon locked deep in the Earth as fossil fuel oils and coal and the carbon that is dissolved in the world's oceans.

In soils, the more edible kinds of carbon from plants are quickly digested by bacteria and turned back into carbon dioxide. But about half the organic carbon in soils is less edible or protected from the bacteria, making it ultimately responsible for long-term carbon storage on land, the authors say.

This carbon pool is not likely to have a role in offsetting increased greenhouse carbon dioxide in the atmosphere any time soon because of the very slow processes at work, Smittenberg says. Instead a better estimate of how long that carbon persists in soils is important for modelers interested in carbon reserves on a timescale of 1,000 years or who are interested in changing carbon storage on land through time as vegetation changes.

For this work, the researchers obtained sediment cores from Saanich Inlet, a fjord on Vancouver Island in British Columbia. There low-temperature oxygen-starved bottom waters help preserve annual layers of sediments, some no less than a half-inch thick, that include matter from forest soils carried by water into the inlet.

Smittenberg used organic chemistry to isolate the plant wax molecules from other kinds of carbon, such as that derived from marine algae. Co-author Tim Eglinton of Woods Hole Oceanographic Institution did the radiocarbon testing.

Today's soils are comprised of a mix of organic matter that is 11,000 years old, zero years old from today's input and every age in between, Smittenberg says. The average age of the resilient waxy carbon is 5,500 years right now.

"It is likely that at least some of the resilient carbon has disappeared from the soils," he says. "It wouldn't be possible, for instance, to measure any in the fjord sediments if some of it hadn't eroded away," he says. "But this loss is relatively small compared to what is staying in the soils and the addition of more resilient organic matter.

"Thus the system is far from equilibrium as current models assume," he says.

If the findings hold true in other northern forests, it would put the terrestrial biosphere in a more prominent position as a slow but progressively important atmospheric carbon sink on geologic time scales. It could even influence current predictions about carbon cycling and soil carbon storage in response to increasing amounts of carbon dioxide in the atmosphere, the co-authors conclude.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>