Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies Raise Questions about Climate Change

04.02.2002


Image: Courtesy of NASA


Climate prediction just got trickier, according to two new studies appearing in the current issue of the journal Science. Analysis of more than two decades of satellite data shows that more sunlight entered the tropics and more heat escaped to space in the 1990s than a decade earlier. Moreover, current climate models fail to account for the new findings, suggesting that they may contain more uncertainty than previously thought.

For the earth’s climate to remain unchanged, the planet’s energy budget must equal zero—that is, the planet must emit or reflect the same amount of energy that enters as sunlight. But that’s not what Columbia University researcher Junye Chen and colleagues found when they studied thermal radiation emitted by earth (left sphere in image) and reflected sunlight (right sphere in image) over the tropics. Between 1985 and 2000, they found, the amount of energy emitted increased while the amount reflected decreased, with most of the change occurring after 1990. The findings suggest that the movement of air masses over the tropics—the so-called Hadley and Walker circulation cells—increased in strength, causing rising air to become moister and sinking air drier.

In the second study, Bruce Wielicki of NASA’s Langley Research Center and colleagues demonstrated that the earth’s radiative energy budget varies on timescales as short as a decade, making it much more variable than previously thought. Using satellite data covering 22 years, they identified peaks in the amount of energy escaping the atmosphere and seasonal variations in the amount of incoming radiation. "We tracked the changes to a decrease in tropical cloudiness that allowed more sunlight to reach the earth’s surface," Wielicki explains. "But what we want to know is why the clouds would change." Failure to fully account for the effects of clouds is one of the greatest weaknesses of current climate models. Indeed, four major climate models could not reproduce the tropical cloud changes or generate what the researchers call the "more subtle, but still large, decadal changes seen in the radiation data."



The scientists do not yet know what causes this variation in tropical radiation. "We think this is a natural fluctuation," Anthony Del Genio of NASA’s Goddard Institute for Space Studies says, "but there is no way to tell yet." Still, he advises, even before knowing the cause of the variability, researchers should attempt to modify their models in order to accommodate it.

Sarah Graham | Scientific American

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>