Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coral reefs are increasingly vulnerable to angry oceans

Study predicts which corals are at greatest risk

Size and shape may predict the survival of corals around the world when the weather churns the oceans in the years to come, according to a new model that relies on engineering principles.

The increasing violence of storms associated with global climate change, as well as future tsunamis, will have major effects on coral reefs, according to a paper published this week in the international scientific journal Nature. Shape and size of the corals are key variables, according to the authors.

"Coral reef experts have long had a general sense of which coral shapes are more vulnerable during storms than others," said first author Joshua Madin, a scientist with the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California, Santa Barbara. "However, to really predict how these events impact the dynamics of coral reefs we needed a way to quantify these vulnerabilities."

The authors created the world's first engineering model to predict how much damage a reef is likely to suffer when confronted with the might of an angry sea. They used mathematical models to calculate the forces that coral is subjected to –– events such as waves, storm surges, or tsunamis –– and the probability of the colonies being ripped from the seabed.

Working with co-author Sean Connolly, Madin developed the model at the Centre of Excellence for Coral Reef Studies (CoECRS) at James Cook University, Australia. Connolly is also a senior lecturer at James Cook University.

How coral assemblages respond to the power of the sea is essential for understanding the natural distribution of coral types on present-day reefs as well as for projecting how they will change in response to more violent or frequent storms, according to the researchers.

"Our study offers a solution to this longstanding problem by factoring in the shape of different coral colonies, the strength of the sea-bed to which they attach, and the change in force of the waves as they move across the reef," said Madin. "This enables us to predict the likely changes in composition of the coral in response to present and future storms or tsunamis."

The researchers explained that managers can use this information to better understand how the world's coral reefs might change under a more unpredictable climate.

"The predictive tool we have developed allows managers to assess the vulnerability of their reefs to extreme wave events," said Madin. "The ability to estimate the potential damage on a reef for different disaster scenarios could help managers plan for economic losses as well as promote strategies to help the reef recover."

The researchers used mathematical models borrowed from engineering theory to translate the movement of storm waves into mechanical stresses on the coral in different parts of the reef, incorporating the various shapes of coral colonies, and then calculated whether or not they will be dislodged during extreme weather.

The study introduces a new concept, "colony shape factor," to translate the myriad shapes and sizes of coral colonies onto a simple scale that measures their vulnerability to being dislodged. Any severe event, like a hurricane, imposes a threshold that can be scored on the same scale, allowing scientists to determine which coral will live and which will die.

The scientists found that the most vulnerable corals are "table" corals, which have a broad flat top supported by a narrow stalk, making them more susceptible to strong wave forces than bushy or mounded corals. Vulnerability also depends on whether the coral grows on the front, crest, flat or the back of the reef, where the force of the waves progressively dies away.

The team ran a field test at Lizard Island, in the northern part of the Great Barrier Reef, taking digital photographs of corals, and calculating their vulnerability. They found that the threshold imposed by the previous year's biggest storm predicted the pattern of coral sizes and shapes almost perfectly.

"There were a lot of table corals present that went right up to the threshold from the last big storm, and then suddenly nothing above it," said Connolly. "They even followed the predicted trends from the reef crest to the reef back."

The researchers say that more severe storms, by themselves, would probably not pose a large threat to reefs. "Corals are adapted to life in stormy seas. Even the vulnerable species are quite stable when they're young," said Connolly. "They also tend to grow and mature quickly, so the species can recover before the next big storm arrives."

However, one effect of the increased production of greenhouse gases is an increase in the acidity of the ocean. This is likely to reduce the stability of coral reefs, and amplify the damage done by tropical storms in coming decades. Other effects of global warming could limit the capacity of the reefs to bounce back from periods of high wave forces, according to the researchers. For example, episodes of unusually hot temperatures can cause corals' cells to become toxic, or bleached. Another problem is overfishing, which can deplete the fish that eat dead coral and keep the reef clear for the next generation of corals.

"Regardless of whether we think of more severe storms as a looming threat or just the ramping up of a natural cycle, one thing is certain," said Connolly. "To predict how coral reefs will look under different future scenarios, and to plan accordingly, we needed to know exactly how wave forces impact who lives and who dies on the reef. These new models provide us with that essential tool."

Gail Gallessich | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>