Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Historic volcanic eruption shrunk the mighty Nile River

23.11.2006
Volcanic eruptions in high latitudes can greatly alter climate and distant river flows, including the Nile, according to a recent study funded in part by NASA.

Researchers found that Iceland's Laki volcanic event, a series of about ten eruptions from June 1783 through February 1784, significantly changed atmospheric circulations across much of the Northern Hemisphere. This created unusual temperature and precipitation patterns that peaked in the summer of 1783, including far below normal rainfall over much of the Nile River watershed and record low river levels.

The study provides new evidence that large volcanic eruptions north of the equator often have far different impacts on climate than those in the tropics. "While considerable research has shown that eruptions in the tropics influence climate in the Northern Hemisphere winter, this study indicates that eruptions in high-latitudes produce changes in atmospheric circulation in the Northern Hemisphere summer," said lead author Luke Oman, Rutgers University, New Brunswick, N.J. Using a sophisticated computer model developed by NASA's Goddard Institute for Space Studies, New York, the researchers linked the Laki eruptions to a cascade of effects that rippled across much of the Northern Hemisphere, altering surface temperatures that ultimately resulted in much below normal rainfall over the Sahel of Africa and record low water levels on the Nile River for up to a year. The Sahel is a stretch of land from the Atlantic Ocean to the "Horn of Africa" that includes the Sahara Desert and savanna areas with sparse vegetation.

"These findings may help us improve our predictions of climate response following the next strong high-latitude eruption, specifically concerning changes in temperature and precipitation," said Oman. "Many societies are very dependent on seasonal precipitation for their livelihood and these predictions may ultimately allow communities time to plan for consequences, including impacts on regional food and water supplies."

The Laki event had such a significant impact on the climate because it released large amounts of sulfur dioxide into the atmosphere. When combined with water vapor, the gas formed into tiny particles called aerosols that reduced incoming solar radiation, cooling the average temperature over Northern Hemisphere land masses by as much as 3 degrees Celsius (5.4 degrees Fahrenheit) in the summer of 1783, as simulated with the computer model. Tree ring data also showed significantly reduced tree growth in the summer of 1783, indicative of the coolest summer of the last 400 years in northwestern Alaska, while tree growth in parts of Siberia was the least in 500-600 years.

These unusually cool temperatures reduced the temperature difference between the land masses of Eurasia and Africa and the Indian and Atlantic oceans, weakening the African and Indian monsoon. A monsoon is a seasonal shift in wind direction and in this region marks the return of the rainy season. Without a significant temperature contrast between land and ocean, onshore winds weaken, reducing the inland transport of moisture and rainfall in the region.

In contrast to the cooling over Northern Hemisphere land masses, computer simulations showed the weakening monsoon led to an area of significant warming of 1 to 2 degrees Celsius (1.8 to 3.6 degrees Fahrenheit) over the Sahel of Africa, southern Arabian Peninsula, and India in the summer of 1783. The researchers believe the weaker-than-normal monsoon reduced the cloud cover in the region, allowing more of the sun's energy to reach the surface, raising temperatures and further worsening drought conditions.

Computer model simulations also showed that this reduction in cloud cover was consistent with a decline in summer precipitation. "Some of the driest weather occurred over the Nile and Niger River watersheds," said Oman. "The relative lack of cloud cover and increased temperature likely amplified evaporation, further lessening water available for run-off."

To see what effect major high-latitude volcanic eruptions have on rainfall and river levels, the researchers used records on the height of the Nile River that date back to 622 A.D. Record low Nile River water levels occurred in 1783-1784 following the Laki event. Similarly low levels were observed after the Mount Katmai, Alaska, eruption in 1912, when the Niger River was also at a record low. And in 939 A.D. there was also low Nile River flow following the Eldgjá eruption in Iceland. "Our analysis found there is less than a 3 percent chance that the Laki and Katmai low river flow events could be attributed to natural climate variability," said Oman.

Unlike the Laki and Katmai eruptions, similarly powerful eruptions in the tropics usually release aerosols high into the atmosphere, where they can spread around much of the globe for up to two years. As a result, tropical eruptions can influence climate around the world, but often in a different and less dramatic fashion. For instance, the eruption of Mount Pinatubo in the Philippines in 1991 resulted in upper atmospheric warming, but the aerosols also blocked heat from the sun in the lower atmosphere, cooling surface temperatures in the subtropics. This worked to reduce the difference in temperatures from north to south, altering large-scale atmospheric circulations that resulted in changes to other areas, including warmer-than-normal winters over the Northern Hemisphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>