Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Historic volcanic eruption shrunk the mighty Nile River

23.11.2006
Volcanic eruptions in high latitudes can greatly alter climate and distant river flows, including the Nile, according to a recent study funded in part by NASA.

Researchers found that Iceland's Laki volcanic event, a series of about ten eruptions from June 1783 through February 1784, significantly changed atmospheric circulations across much of the Northern Hemisphere. This created unusual temperature and precipitation patterns that peaked in the summer of 1783, including far below normal rainfall over much of the Nile River watershed and record low river levels.

The study provides new evidence that large volcanic eruptions north of the equator often have far different impacts on climate than those in the tropics. "While considerable research has shown that eruptions in the tropics influence climate in the Northern Hemisphere winter, this study indicates that eruptions in high-latitudes produce changes in atmospheric circulation in the Northern Hemisphere summer," said lead author Luke Oman, Rutgers University, New Brunswick, N.J. Using a sophisticated computer model developed by NASA's Goddard Institute for Space Studies, New York, the researchers linked the Laki eruptions to a cascade of effects that rippled across much of the Northern Hemisphere, altering surface temperatures that ultimately resulted in much below normal rainfall over the Sahel of Africa and record low water levels on the Nile River for up to a year. The Sahel is a stretch of land from the Atlantic Ocean to the "Horn of Africa" that includes the Sahara Desert and savanna areas with sparse vegetation.

"These findings may help us improve our predictions of climate response following the next strong high-latitude eruption, specifically concerning changes in temperature and precipitation," said Oman. "Many societies are very dependent on seasonal precipitation for their livelihood and these predictions may ultimately allow communities time to plan for consequences, including impacts on regional food and water supplies."

The Laki event had such a significant impact on the climate because it released large amounts of sulfur dioxide into the atmosphere. When combined with water vapor, the gas formed into tiny particles called aerosols that reduced incoming solar radiation, cooling the average temperature over Northern Hemisphere land masses by as much as 3 degrees Celsius (5.4 degrees Fahrenheit) in the summer of 1783, as simulated with the computer model. Tree ring data also showed significantly reduced tree growth in the summer of 1783, indicative of the coolest summer of the last 400 years in northwestern Alaska, while tree growth in parts of Siberia was the least in 500-600 years.

These unusually cool temperatures reduced the temperature difference between the land masses of Eurasia and Africa and the Indian and Atlantic oceans, weakening the African and Indian monsoon. A monsoon is a seasonal shift in wind direction and in this region marks the return of the rainy season. Without a significant temperature contrast between land and ocean, onshore winds weaken, reducing the inland transport of moisture and rainfall in the region.

In contrast to the cooling over Northern Hemisphere land masses, computer simulations showed the weakening monsoon led to an area of significant warming of 1 to 2 degrees Celsius (1.8 to 3.6 degrees Fahrenheit) over the Sahel of Africa, southern Arabian Peninsula, and India in the summer of 1783. The researchers believe the weaker-than-normal monsoon reduced the cloud cover in the region, allowing more of the sun's energy to reach the surface, raising temperatures and further worsening drought conditions.

Computer model simulations also showed that this reduction in cloud cover was consistent with a decline in summer precipitation. "Some of the driest weather occurred over the Nile and Niger River watersheds," said Oman. "The relative lack of cloud cover and increased temperature likely amplified evaporation, further lessening water available for run-off."

To see what effect major high-latitude volcanic eruptions have on rainfall and river levels, the researchers used records on the height of the Nile River that date back to 622 A.D. Record low Nile River water levels occurred in 1783-1784 following the Laki event. Similarly low levels were observed after the Mount Katmai, Alaska, eruption in 1912, when the Niger River was also at a record low. And in 939 A.D. there was also low Nile River flow following the Eldgjá eruption in Iceland. "Our analysis found there is less than a 3 percent chance that the Laki and Katmai low river flow events could be attributed to natural climate variability," said Oman.

Unlike the Laki and Katmai eruptions, similarly powerful eruptions in the tropics usually release aerosols high into the atmosphere, where they can spread around much of the globe for up to two years. As a result, tropical eruptions can influence climate around the world, but often in a different and less dramatic fashion. For instance, the eruption of Mount Pinatubo in the Philippines in 1991 resulted in upper atmospheric warming, but the aerosols also blocked heat from the sun in the lower atmosphere, cooling surface temperatures in the subtropics. This worked to reduce the difference in temperatures from north to south, altering large-scale atmospheric circulations that resulted in changes to other areas, including warmer-than-normal winters over the Northern Hemisphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>