Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The area of influence of earthquakes could be larger than is currently thought

22.11.2006
Dr Álvaro Corral, a Ramón y Cajal researcher for the UAB Department of Physics, studies the relationships between the time and place of earthquake occurrences (ie, the jumps between an initial earthquake and another earthquake at a later time in another place) using statistical physics methods.

By analysing data on the distance between consecutive earthquakes, Dr Corral has concluded that the area of influence of seismic activity could be larger than was thought until now. The result of his work has been published in Physical Review Letters.

According to Corral, this work could lead to support for the idea of long-range earthquake triggering. It has always been thought that the influence of an earthquake was restricted to the rupture zone created by the earthquake at a geological fault, but the researchers now suspect that an earthquake may produce "aftershocks" much further afield, even on the opposite side of a tectonic plate to a main shock.

The diffusion of earthquake occurrences could be like a drop of ink in water. When the ink drop is added (the type of problem usually studied in statistical physics), an ink molecule collides with the water molecules at certain moments and in certain positions; similarly, a series of earthquakes are said to appear in time and in space. However, the reality is that the characteristics of these two cases are very different.

The expansion of the ink molecules occurs on a characteristic scale: that of the ink molecules colliding with water molecules (ie, they always collide after moving a relatively set distance in a relatively set amount of time). Yet earthquakes do not spread in such a normal, regular way. The distance between one earthquake and the subsequent earthquake can be larger or smaller than in previous cases, and the variation seems to be completely arbitrary. There is no characteristic scale.

The data observed seem to imply that the boundary for the influence of earthquakes could be much further away from the epicentre than was previously thought. It is difficult to calculate this boundary, since beyond a distance of 200 kilometres, the influence of an earthquake is hard to distinguish from "background seismicity", that is, the occurrence of other, unrelated earthquakes. Dr Corral believes that more sophisticated analysis techniques could be used to overcome this problem.

Scale models

The researcher has also observed that the earthquake occurrences in a certain region, such as California, could be extrapolated to the whole planet. In other words, the spatiotemporal occurrence of earthquakes in California is a scale model of what happens in the whole world. By observing this region, therefore, we are seeing a smaller version of the whole world. This shows the strange, fractal nature of seismicity, that is, that it maintains its form irrespective of its scale.

The results of this research also show that the diffusion of earthquakes does not depend on their size: small and large earthquakes spread in the same way. Therefore, small earthquakes, which are much more frequent, are the best model to use for the occurrence of larger earthquakes. This magnitude independence is anti-intuitive, and the researcher cannot yet offer any explanation for the phenomenon.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>