Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The area of influence of earthquakes could be larger than is currently thought

22.11.2006
Dr Álvaro Corral, a Ramón y Cajal researcher for the UAB Department of Physics, studies the relationships between the time and place of earthquake occurrences (ie, the jumps between an initial earthquake and another earthquake at a later time in another place) using statistical physics methods.

By analysing data on the distance between consecutive earthquakes, Dr Corral has concluded that the area of influence of seismic activity could be larger than was thought until now. The result of his work has been published in Physical Review Letters.

According to Corral, this work could lead to support for the idea of long-range earthquake triggering. It has always been thought that the influence of an earthquake was restricted to the rupture zone created by the earthquake at a geological fault, but the researchers now suspect that an earthquake may produce "aftershocks" much further afield, even on the opposite side of a tectonic plate to a main shock.

The diffusion of earthquake occurrences could be like a drop of ink in water. When the ink drop is added (the type of problem usually studied in statistical physics), an ink molecule collides with the water molecules at certain moments and in certain positions; similarly, a series of earthquakes are said to appear in time and in space. However, the reality is that the characteristics of these two cases are very different.

The expansion of the ink molecules occurs on a characteristic scale: that of the ink molecules colliding with water molecules (ie, they always collide after moving a relatively set distance in a relatively set amount of time). Yet earthquakes do not spread in such a normal, regular way. The distance between one earthquake and the subsequent earthquake can be larger or smaller than in previous cases, and the variation seems to be completely arbitrary. There is no characteristic scale.

The data observed seem to imply that the boundary for the influence of earthquakes could be much further away from the epicentre than was previously thought. It is difficult to calculate this boundary, since beyond a distance of 200 kilometres, the influence of an earthquake is hard to distinguish from "background seismicity", that is, the occurrence of other, unrelated earthquakes. Dr Corral believes that more sophisticated analysis techniques could be used to overcome this problem.

Scale models

The researcher has also observed that the earthquake occurrences in a certain region, such as California, could be extrapolated to the whole planet. In other words, the spatiotemporal occurrence of earthquakes in California is a scale model of what happens in the whole world. By observing this region, therefore, we are seeing a smaller version of the whole world. This shows the strange, fractal nature of seismicity, that is, that it maintains its form irrespective of its scale.

The results of this research also show that the diffusion of earthquakes does not depend on their size: small and large earthquakes spread in the same way. Therefore, small earthquakes, which are much more frequent, are the best model to use for the occurrence of larger earthquakes. This magnitude independence is anti-intuitive, and the researcher cannot yet offer any explanation for the phenomenon.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>