Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seven-Year Stabilization of Methane May Slow Global Warming

20.11.2006
Levels of atmospheric methane, an influential greenhouse gas, have stayed nearly flat for the past seven years, following a rise that spanned at least two decades, researchers say.

This finding indicates that methane may no longer be as large a global warming threat as previously thought, and it provides evidence that methane levels can be controlled.

Scientists also found that pulses of increased methane were paralleled by increases of ethane, a gas emitted during fires. This is further evidence, they say, that methane is formed during biomass burning and that large-scale fires can be a big source of atmospheric methane.

Professors Sherwood Rowland and Donald Blake of the University of California, Irvine, and researchers Isobel Simpson and Simone Meinardi, say that one reason for the slowdown in the growth of methane concentration may be leak-preventing repairs made to oil and gas pipelines and storage facilities, which can release methane into the atmosphere. Other reasons may include slower growth or actual decrease in methane emissions from coal mining, rice paddies, and natural gas production, they say.

"If one really tightens emissions, the amount of methane in the atmosphere 10 years from now could be less than it is today. We will gain some ground on global warming if methane is not as large a contributor in the future as it has been in the past century," said Rowland, a co-recipient of the 1995 Nobel Prize for discovering that chlorofluorocarbons in such products as aerosol sprays and coolants were damaging the Earth's protective ozone layer. The research will be published 23 November in Geophysical Research Letters.

Methane, the main ingredient of natural gas, warms the atmosphere through the greenhouse effect and helps form ozone, a component of smog. Since the Industrial Revolution in the late 1700s, atmospheric methane has more than doubled. About two-thirds of methane emissions can be traced to human activities, such as fossil-fuel extraction, rice paddies, landfills, and cattle farming.

Scientists in the Rowland-Blake laboratory use canisters to collect sea-level air in locations from northern Alaska to southern New Zealand. They then measure the amount of methane in each canister and calculate a global average.

From 1978 to 1987, the amount of methane in the global troposphere increased by 11 percent, a more than one percent increase each year. In the late 1980s, the growth rate slowed to between 0.3 percent and 0.6 percent per year. It continued to decline into the 1990s, but with a few sharp upward fluctuations, which scientists have linked to non-cyclical events such as the eruption of Mount Pinatubo in 1991 and Indonesian and boreal wildfires in 1997 and 1998. Then, from December 1998 to December 2005, the samples showed a near-zero growth of methane, ranging from an annual 0.2 percent decrease to a 0.3 percent gain.

Along with methane, the scientists also measured levels of other gases, including ethane, a by-product of petroleum refining that also is formed during biomass burning, and perchloroethylene, a chlorinated solvent often used in the dry cleaning process. Ethane levels followed the peaks and valleys of methane over time, but perchloroethylene showed a different pattern. This finding provides evidence that biomass burning can on occasion, as in Indonesia in 1997 and Russia in 1998, be a large source of atmospheric methane, the researchers say.

They say there is no reason to assume that methane levels will remain stable in the future, but the fact that leveling off is occurring now indicates that society can do something about global warming. Methane has an atmospheric lifetime of about eight years. Carbon dioxide, the main greenhouse gas that is produced by burning fossil fuels for power generation and transportation, can last a century and has been accumulating steadily in the atmosphere.

"If carbon dioxide levels were the same today as they were in 2000, the global warming discussion would leave the front page," Rowland said. "But to stabilize this greenhouse gas, we would have to cut way back on emissions. Methane is not as significant a greenhouse gas as carbon dioxide, but its effects are important. The world needs to work hard to reduce emissions of all greenhouse gases."

NASA and the Gary Comer Abrupt Climate Change Fellowship supported this research.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>