Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seven-Year Stabilization of Methane May Slow Global Warming

20.11.2006
Levels of atmospheric methane, an influential greenhouse gas, have stayed nearly flat for the past seven years, following a rise that spanned at least two decades, researchers say.

This finding indicates that methane may no longer be as large a global warming threat as previously thought, and it provides evidence that methane levels can be controlled.

Scientists also found that pulses of increased methane were paralleled by increases of ethane, a gas emitted during fires. This is further evidence, they say, that methane is formed during biomass burning and that large-scale fires can be a big source of atmospheric methane.

Professors Sherwood Rowland and Donald Blake of the University of California, Irvine, and researchers Isobel Simpson and Simone Meinardi, say that one reason for the slowdown in the growth of methane concentration may be leak-preventing repairs made to oil and gas pipelines and storage facilities, which can release methane into the atmosphere. Other reasons may include slower growth or actual decrease in methane emissions from coal mining, rice paddies, and natural gas production, they say.

"If one really tightens emissions, the amount of methane in the atmosphere 10 years from now could be less than it is today. We will gain some ground on global warming if methane is not as large a contributor in the future as it has been in the past century," said Rowland, a co-recipient of the 1995 Nobel Prize for discovering that chlorofluorocarbons in such products as aerosol sprays and coolants were damaging the Earth's protective ozone layer. The research will be published 23 November in Geophysical Research Letters.

Methane, the main ingredient of natural gas, warms the atmosphere through the greenhouse effect and helps form ozone, a component of smog. Since the Industrial Revolution in the late 1700s, atmospheric methane has more than doubled. About two-thirds of methane emissions can be traced to human activities, such as fossil-fuel extraction, rice paddies, landfills, and cattle farming.

Scientists in the Rowland-Blake laboratory use canisters to collect sea-level air in locations from northern Alaska to southern New Zealand. They then measure the amount of methane in each canister and calculate a global average.

From 1978 to 1987, the amount of methane in the global troposphere increased by 11 percent, a more than one percent increase each year. In the late 1980s, the growth rate slowed to between 0.3 percent and 0.6 percent per year. It continued to decline into the 1990s, but with a few sharp upward fluctuations, which scientists have linked to non-cyclical events such as the eruption of Mount Pinatubo in 1991 and Indonesian and boreal wildfires in 1997 and 1998. Then, from December 1998 to December 2005, the samples showed a near-zero growth of methane, ranging from an annual 0.2 percent decrease to a 0.3 percent gain.

Along with methane, the scientists also measured levels of other gases, including ethane, a by-product of petroleum refining that also is formed during biomass burning, and perchloroethylene, a chlorinated solvent often used in the dry cleaning process. Ethane levels followed the peaks and valleys of methane over time, but perchloroethylene showed a different pattern. This finding provides evidence that biomass burning can on occasion, as in Indonesia in 1997 and Russia in 1998, be a large source of atmospheric methane, the researchers say.

They say there is no reason to assume that methane levels will remain stable in the future, but the fact that leveling off is occurring now indicates that society can do something about global warming. Methane has an atmospheric lifetime of about eight years. Carbon dioxide, the main greenhouse gas that is produced by burning fossil fuels for power generation and transportation, can last a century and has been accumulating steadily in the atmosphere.

"If carbon dioxide levels were the same today as they were in 2000, the global warming discussion would leave the front page," Rowland said. "But to stabilize this greenhouse gas, we would have to cut way back on emissions. Methane is not as significant a greenhouse gas as carbon dioxide, but its effects are important. The world needs to work hard to reduce emissions of all greenhouse gases."

NASA and the Gary Comer Abrupt Climate Change Fellowship supported this research.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>