Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Find New Origins of Appalachian Mountains

20.11.2006
Geologists have developed a new theory to explain how and when the Appalachian Mountain range was created. Their research redraws the map of the planet from 420 million years ago.

The scientists recently discovered a piece of the Appalachian Mountains in southern Mexico, a location geologists long had assumed was part of the North American Cordillera. The Cordillera is a continuous sequence of mountain ranges that includes the Rocky Mountains. It stretches from Alaska to Mexico and continues into South America.

For the past decade, geologists have collected information from Mexico’s Acatlán Complex, a rock outcropping the size of Massachusetts. As they uncovered each new piece of data from the complex, evidence contradicting earlier assumptions about the origins of that part of Mexico emerged.

“It was a story that had the Appalachians written all over it,” said Damian Nance, Ohio University professor of geological sciences and lead author of an article detailing the findings, which was published in the October issue of Geology. “This will change the way geologists look at Mexico.”

It also changes existing theory regarding the creation of the Appalachians, which has radically altered scientists’ understanding of the planet’s geography, said Nance. Age data, newly unearthed fossils and chemical analysis of the rocks show that the complex is much younger than previously thought. It records a pivotal part of the Appalachian story not preserved elsewhere.

According to the conventional map of 420 million years ago, two main land masses were separated by the Rheic Ocean. In the south sat Gondwana, a supercontinent consisting of South America, Africa, India, Australia and Antarctica. To the north was Laurussia, made up of North America, Greenland, Europe and part of Asia. The old map showed the Acátlan Complex attached to Laurussia. The complex broke off Gondwana about 80 million years earlier, drifted toward North America along with the other land masses, closing an older ocean, known as the Iapetus Ocean, as it did so. The collision created the Appalachian Mountains.

The new map looks rather different.

Evidence collected by Nance and his colleagues from rocks in the Acatlán Complex shows that its collision with Laurussia actually occurred about 120 million years later. The rocks once existed on an ancient ocean floor, but this ocean has proven to be the Rheic, not Iapetus as previously thought.

The explanation, Nance and his fellow authors say, is that the Acatlán Complex was originally attached to Gondwana. Gondwana and the complex eventually slammed into North America, closing the Rheic Ocean in the process. This cataclysmic crunch of continental plates formed the goliath land mass known as Pangea, Nance said, and created the Appalachian Mountains.

“We believe we have found the missing piece of the Rheic suture where Gondwana and North America converged,” said Nance. “All the evidence point to that and, as far as we know, it is the best preserved piece of this puzzle in North America.”

Now geologists from around the world, funded by the United Nations Educational, Scientific and Cultural Organization (UNESCO), are expanding the search for evidence of the Rheic Ocean in order to unravel its history from initial opening to final closure.

“We want to see if the ocean opened and closed everywhere at the same time or at different times like a jaw opening and closing. We want to understand the mechanics of these processes,” said Nance.

The Acatlán Complex study was funded by the National Science Foundation, the Natural Sciences and Engineering Council of Canada, the Spanish Ministry of Education and Science and a Mexican Papiit Grant.

Brent V. Miller of Texas A&M University, J. Duncan Keppie of Universidad Nacional Autonoma de Mexico, J. Brendan Murphy of St. Francis Xavier University in Nova Scotia and Jaroslav Dostal of St. Mary’s University in Nova Scotia co-authored the paper appearing in Geology.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>