Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Find New Origins of Appalachian Mountains

20.11.2006
Geologists have developed a new theory to explain how and when the Appalachian Mountain range was created. Their research redraws the map of the planet from 420 million years ago.

The scientists recently discovered a piece of the Appalachian Mountains in southern Mexico, a location geologists long had assumed was part of the North American Cordillera. The Cordillera is a continuous sequence of mountain ranges that includes the Rocky Mountains. It stretches from Alaska to Mexico and continues into South America.

For the past decade, geologists have collected information from Mexico’s Acatlán Complex, a rock outcropping the size of Massachusetts. As they uncovered each new piece of data from the complex, evidence contradicting earlier assumptions about the origins of that part of Mexico emerged.

“It was a story that had the Appalachians written all over it,” said Damian Nance, Ohio University professor of geological sciences and lead author of an article detailing the findings, which was published in the October issue of Geology. “This will change the way geologists look at Mexico.”

It also changes existing theory regarding the creation of the Appalachians, which has radically altered scientists’ understanding of the planet’s geography, said Nance. Age data, newly unearthed fossils and chemical analysis of the rocks show that the complex is much younger than previously thought. It records a pivotal part of the Appalachian story not preserved elsewhere.

According to the conventional map of 420 million years ago, two main land masses were separated by the Rheic Ocean. In the south sat Gondwana, a supercontinent consisting of South America, Africa, India, Australia and Antarctica. To the north was Laurussia, made up of North America, Greenland, Europe and part of Asia. The old map showed the Acátlan Complex attached to Laurussia. The complex broke off Gondwana about 80 million years earlier, drifted toward North America along with the other land masses, closing an older ocean, known as the Iapetus Ocean, as it did so. The collision created the Appalachian Mountains.

The new map looks rather different.

Evidence collected by Nance and his colleagues from rocks in the Acatlán Complex shows that its collision with Laurussia actually occurred about 120 million years later. The rocks once existed on an ancient ocean floor, but this ocean has proven to be the Rheic, not Iapetus as previously thought.

The explanation, Nance and his fellow authors say, is that the Acatlán Complex was originally attached to Gondwana. Gondwana and the complex eventually slammed into North America, closing the Rheic Ocean in the process. This cataclysmic crunch of continental plates formed the goliath land mass known as Pangea, Nance said, and created the Appalachian Mountains.

“We believe we have found the missing piece of the Rheic suture where Gondwana and North America converged,” said Nance. “All the evidence point to that and, as far as we know, it is the best preserved piece of this puzzle in North America.”

Now geologists from around the world, funded by the United Nations Educational, Scientific and Cultural Organization (UNESCO), are expanding the search for evidence of the Rheic Ocean in order to unravel its history from initial opening to final closure.

“We want to see if the ocean opened and closed everywhere at the same time or at different times like a jaw opening and closing. We want to understand the mechanics of these processes,” said Nance.

The Acatlán Complex study was funded by the National Science Foundation, the Natural Sciences and Engineering Council of Canada, the Spanish Ministry of Education and Science and a Mexican Papiit Grant.

Brent V. Miller of Texas A&M University, J. Duncan Keppie of Universidad Nacional Autonoma de Mexico, J. Brendan Murphy of St. Francis Xavier University in Nova Scotia and Jaroslav Dostal of St. Mary’s University in Nova Scotia co-authored the paper appearing in Geology.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>